While short-range noncovalent interactions (NCIs) are proving to be of importance in many chemical and biological systems, these atypical bindings happen within the so-called van der Waals envelope and pose an enormous challenge for current computational methods. We introduce SNCIAA, a database of 723 benchmark interaction energies of short-range noncovalent interactions between neutral/charged amino acids originated from protein x-ray crystal structures at the “gold standard” coupled-cluster with singles, doubles, and perturbative triples/complete basis set [CCSD(T)/CBS] level of theory with a mean absolute binding uncertainty less than 0.1 kcal/mol. Subsequently, a systematic assessment of commonly used computational methods, such as the second-order Møller−Plesset theory (MP2), density functional theory (DFT), symmetry-adapted perturbation theory (SAPT), composite electronic-structure methods, semiempirical approaches, and the physical-based potentials with machine learning (IPML) on SNCIAA is carried out. It is shown that the inclusion of dispersion corrections is essential even though these dimers are dominated by electrostatics, such as hydrogen bondings and salt bridges. Overall, MP2, ωB97M-V, and B3LYP+D4 turned out to be the most reliable methods for the description of short-range NCIs even in strongly attractive/repulsive complexes. SAPT is also recommended in describing short-range NCIs only if the δMP2 correction has been included. The good performance of IPML for dimers at close-equilibrium and long-range conditions is not transferable to the short-range. We expect that SNCIAA will assist the development/improvement/validation of computational methods, such as DFT, force-fields, and ML models, in describing NCIs across entire potential energy surfaces (short-, intermediate-, and long-range NCIs) on the same footing.

1.
I. G.
Kaplan
,
Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials
(
Wiley
,
2006
).
2.
Non-covalent Interactions in Quantum Chemistry and Physics
, edited by
A.
Otero-de-la-Roza
and
G. A.
DiLabio
(
Elsevier
,
2017
).
3.
B.
Schatschneider
,
S.
Monaco
,
A.
Tkatchenko
, and
J.-J.
Liang
,
J. Phys. Chem. A
117
,
8323
(
2013
).
4.
W.-P.
Wang
,
Q.-J.
Liu
,
F.-S.
Liu
, and
Z.-T.
Liu
,
Comput. Theor. Chem.
1167
,
112603
(
2019
).
6.
H. W.
Qi
and
H. J.
Kulik
,
J. Chem. Inf. Model.
59
,
2199
(
2019
).
7.
S.
Zhou
and
L.
Wang
,
Chem. Sci.
10
,
7734
(
2019
).
8.
S.
Rajagopal
and
S.
Vishveshwara
,
FEBS J.
272
,
1819
(
2005
).
9.
M. T.
Kemp
,
E. M.
Lewandowski
, and
Y.
Chen
,
Biochim. Biophys. Acta, Proteins Proteomics
1869
,
140557
(
2021
).
10.
K.
Takano
,
K.
Tsuchimori
,
Y.
Yamagata
, and
K.
Yutani
,
Biochem
39
,
12375
(
2000
).
11.
H. R.
Bosshard
,
D. N.
Marti
, and
I.
Jelesarov
,
J. Mol. Recognit.
17
,
1
(
2004
).
12.
H.
Gong
and
K. F.
Freed
,
Biophys. J.
98
,
470
(
2010
).
13.
14.
M. W.
Hinzman
,
M. E.
Essex
, and
C.
Park
,
Protein Sci.
25
,
999
(
2016
).
15.
O.
Gerlits
 et al,
Angew. Chem.
128
,
5008
(
2016
).
16.
R.
Kurczab
,
P.
Śliwa
,
K.
Rataj
,
R.
Kafel
, and
A. J.
Bojarski
,
J. Chem. Inf. Model.
58
,
2224
(
2018
).
17.
P.
Kumar
,
E. H.
Serpersu
, and
M. J.
Cuneo
,
Sci. Adv.
4
,
eaas8667
(
2018
).
19.
C. N.
Fuhrmann
,
M. D.
Daugherty
, and
D. A.
Agard
,
J. Am. Chem. Soc.
128
,
9086
(
2006
).
20.
T.
Tamada
 et al,
J. Am. Chem. Soc.
131
,
11033
(
2009
).
21.
P.
Kumar
,
P. K.
Agarwal
, and
M. J.
Cuneo
,
ChemBioChem
22
,
288
(
2020
).
22.
S.
Anderson
,
S.
Crosson
, and
K.
Moffat
,
Acta Crystallogr., Sect. D: Struct. Biol.
60
,
1008
(
2004
).
23.
S.
Yamaguchi
 et al,
Proc. Natl. Acad. Sci. U.S.A.
106
,
440
(
2009
).
24.
K.
Saito
and
H.
Ishikita
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
167
(
2012
).
25.
M.
Nadal-Ferret
,
R.
Gelabert
,
M.
Moreno
, and
J. M.
Lluch
,
J. Am. Chem. Soc.
136
,
3542
(
2014
).
26.
T.
Graen
,
L.
Inhester
,
M.
Clemens
,
H.
Grubmüller
, and
G.
Groenhof
,
J. Am. Chem. Soc.
138
,
16620
(
2016
).
28.
B.
Thomson
 et al,
J. Phys. Chem. B
123
,
4844
(
2019
).
29.
P.
Kuhrova
 et al,
J. Chem. Theory Comput.
12
,
4534
(
2016
).
30.
M. C.
Ahmed
,
E.
Papaleo
, and
K.
Lindorff-Larsen
,
PeerJ
6
,
e4967
(
2018
).
31.
P. E.
Mason
,
P.
Jungwirth
, and
E.
Duboué-Dijon
,
J. Phys. Chem. Lett.
10
,
3254
(
2019
).
32.
S.
Piana
,
J. L.
Klepeis
, and
D. E.
Shaw
,
Curr. Opin. Struct. Biol.
24
,
98
(
2014
).
33.
K. T.
Debiec
,
A. M.
Gronenborn
, and
L. T.
Chong
,
J. Phys. Chem. B
118
,
6561
(
2014
).
34.
M. C.
Childers
and
V.
Daggett
,
J. Phys. Chem. B
122
,
6673
(
2018
).
35.
L.
Pereyaslavets
 et al,
Proc. Natl. Acad. Sci. U.S.A.
115
,
8878
(
2018
).
36.
37.
Q.
Wang
 et al,
J. Chem. Theory Comput.
11
,
2609
(
2015
).
38.
J. A.
Rackers
 et al,
Phys. Chem. Chem. Phys.
19
,
276
(
2017
).
39.
V.
Vennelakanti
,
A.
Nazemi
,
R.
Mehmood
,
A. H.
Steeves
, and
H. J.
Kulik
,
Curr. Opin. Struct. Biol.
72
,
9
(
2022
).
40.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
124
,
174104
(
2006
).
41.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
42.
A.
Ambrosetti
,
A. M.
Reilly
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
,
J. Chem. Phys.
140
,
18A508
(
2014
).
43.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
44.
E.
Caldeweyher
 et al,
J. Chem. Phys.
150
,
154122
(
2019
).
45.
L.
Gráfová
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
2365
(
2010
).
46.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
47.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
8
,
4285
(
2012
).
48.
R.
Sedlak
 et al,
J. Chem. Theory Comput.
9
,
3364
(
2013
).
49.
J.
Řezáč
and
P.
Hobza
,
J. Chem. Theory Comput.
8
,
141
(
2012
).
50.
K. U.
Lao
,
R.
Schäffer
,
G.
Jansen
, and
J. M.
Herbert
,
J. Chem. Theory Comput.
11
,
2473
(
2015
).
51.
B. G.
Ernst
,
K. U.
Lao
,
A. G.
Sullivan
, and
R. A.
DiStasio
, Jr.
,
J. Phys. Chem. A
124
,
4128
(
2020
).
52.
S.
Spicher
,
E.
Caldeweyher
,
A.
Hansen
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
23
,
11635
(
2021
).
53.
S.
Zahn
,
D. R.
MacFarlane
, and
E. I.
Izgorodina
,
Phys. Chem. Chem. Phys.
15
,
13664
(
2013
).
54.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
,
J. Phys. Chem. Lett.
7
,
2197
(
2016
).
55.
V. M.
Miriyala
and
J.
Řezáč
,
J. Phys. Chem. A
122
,
2801
(
2018
).
56.
K.
Kriz
,
M.
Novacek
, and
J.
Rezac
,
J. Chem. Theory Comput.
17
,
1548
(
2021
).
57.
58.
Z. M.
Sparrow
,
B. G.
Ernst
,
P. T.
Joo
,
K. U.
Lao
, and
R. A.
DiStasio
, Jr.
,
J. Chem. Phys.
155
,
184303
(
2021
).
59.
J. C.
Faver
 et al,
J. Chem. Theory Comput.
7
,
790
(
2011
).
60.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
194102
(
2011
).
61.
62.
L. A.
Burns
 et al,
J. Chem. Phys.
147
,
161727
(
2017
).
63.
K.
Kříž
and
J.
Řezáč
,
J. Chem. Inf. Model.
60
,
1453
(
2020
).
64.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
65.
A. A.
Arabi
and
A. D.
Becke
,
J. Chem. Phys.
137
,
014104
(
2012
).
66.
K. E.
Riley
,
J.
Řezáč
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
14
,
13187
(
2012
).
67.
K. U.
Lao
and
J. M.
Herbert
,
J. Phys. Chem. A
116
,
3042
(
2012
).
68.
A.
Li
,
H. S.
Muddana
, and
M. K.
Gilson
,
J. Chem. Theory Comput.
10
,
1563
(
2014
).
69.
D. G. A.
Smith
and
K.
Patkowski
,
J. Phys. Chem. C
119
,
4934
(
2015
).
70.
71.
P.
Gilli
,
L.
Pretto
, and
G.
Gilli
,
J. Mol. Struct.
844-845
,
328
(
2007
).
72.
R.
Ferreira de Freitas
and
M.
Schapira
,
Med. Chem. Commun.
8
,
1970
(
2017
).
73.
W.
Minor
,
Z.
Dauter
,
J. R.
Helliwell
,
M.
Jaskolski
, and
A.
Wlodawer
,
Structure
24
,
216
(
2016
).
74.
H.
Kruse
,
J.
Sponer
, and
P.
Auffinger
,
J. Chem. Inf. Model.
59
,
3605
(
2019
).
75.
H. W.
Qi
and
H. J.
Kulik
,
J. Chem. Inf. Model.
59
,
3609
(
2019
).
76.
G. A.
Jeffrey
, “
An introduction to hydrogen bonding
,” in
Topics in Physical Chemistry
(
Oxford University Press
,
New York
,
1997
).
77.
D.
Weininger
,
J. Chem. Inf. Comput. Sci.
28
,
31
(
1988
).
78.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
79.
F.
Ballesteros
,
S.
Dunivan
, and
K. U.
Lao
,
J. Chem. Phys.
154
,
154104
(
2021
).
80.
A.
Halkier
 et al,
Chem. Phys. Lett.
286
,
243
(
1998
).
81.
E.
Papajak
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
10
(
2011
).
82.
H.
Kruse
,
P.
Banáš
, and
J.
Šponer
,
J. Chem. Theory Comput.
15
,
95
(
2019
).
83.
E. G.
Hohenstein
and
C. D.
Sherrill
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
304
(
2012
).
84.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
,
J. M.
Turney
, and
H. F.
Schaefer
,
J. Chem. Phys.
135
,
174107
(
2011
).
85.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C. D.
Sherrill
,
J. Chem. Phys.
140
,
094106
(
2014
).
86.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
142
,
074111
(
2015
).
87.
N.
Mardirossian
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
16
,
9904
(
2014
).
88.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
144
,
214110
(
2016
).
89.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
90.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
91.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
92.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
93.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
94.
A. E.
DePrince
and
C. D.
Sherrill
,
J. Chem. Theory Comput.
9
,
293
(
2013
).
95.
D. G. A.
Smith
 et al,
J. Chem. Phys.
152
,
184108
(
2020
).
96.
97.
E.
Epifanovsky
 et al,
J. Chem. Phys.
155
,
084801
(
2021
).
98.
R.
Sure
and
S.
Grimme
,
J. Comput. Chem.
34
,
1672
(
2013
).
99.
S.
Grimme
,
J. G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
,
J. Chem. Phys.
143
,
054107
(
2015
).
100.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Phys.
148
,
064104
(
2018
).
101.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J.-M.
Mewes
,
J. Chem. Phys.
154
,
064103
(
2021
).
102.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
,
J. Chem. Phys.
152
,
224108
(
2020
).
103.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2019
).
104.
C.
Bannwarth
 et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
105.
J.
Řezáč
,
J. Comput. Chem.
37
,
1230
(
2016
).
106.
107.
T.
Bereau
,
R. A.
DiStasio
, Jr.
,
A.
Tkatchenko
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241706
(
2018
).
108.
Z. J.
Kinney
,
A. L.
Rheingold
, and
J. D.
Protasiewicz
,
RSC Adv.
10
,
42164
(
2020
).
109.
S.
Horowitz
and
R. C.
Trievel
,
J. Biol. Chem.
287
,
41576
(
2012
).
110.
A. L.
Webber
 et al,
J. Phys. Chem. A
124
,
560
(
2020
).
111.
S.
Marqusee
and
R. L.
Baldwin
,
Proc. Natl. Acad. Sci. U.S.A.
84
,
8898
(
1987
).
112.
M.
Pitoňák
,
T.
Janowski
,
P.
Neogrády
,
P.
Pulay
, and
P.
Hobza
,
J. Chem. Theory Comput.
5
,
1761
(
2009
).
113.
S.
Zhou
,
Y.
Liu
,
S.
Wang
, and
L.
Wang
,
Sci. Rep.
12
,
469
(
2022
).
114.
N. J.
Singh
,
S. K.
Min
,
D. Y.
Kim
, and
K. S.
Kim
,
J. Chem. Theory Comput.
5
,
515
(
2009
).
115.
C.
Villot
,
F.
Ballesteros
,
D.
Wang
, and
K. U.
Lao
,
J. Phys. Chem. A
126
,
4326
(
2022
).
116.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
,
J. Chem. Phys.
144
,
130901
(
2016
).
117.
X.
Xu
and
W. A.
Goddard
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
2673
(
2004
).
118.
R.
Schäffer
and
G.
Jansen
,
Mol. Phys.
111
,
2570
(
2013
).
119.
M. A.
Spackman
,
Chem. Phys. Lett.
418
,
158
(
2006
).

Supplementary Material

You do not currently have access to this content.