The dynamics of many-body fermionic systems are important in problems ranging from catalytic reactions at electrochemical surfaces to transport through nanojunctions and offer a prime target for quantum computing applications. Here, we derive the set of conditions under which fermionic operators can be exactly replaced by bosonic operators that render the problem amenable to a large toolbox of dynamical methods while still capturing the correct dynamics of n-body operators. Importantly, our analysis offers a simple guide on how one can exploit these simple maps to calculate nonequilibrium and equilibrium single- and multi-time correlation functions essential in describing transport and spectroscopy. We use this to rigorously analyze and delineate the applicability of simple yet effective Cartesian maps that have been shown to correctly capture the correct fermionic dynamics in select models of nanoscopic transport. We illustrate our analytical results with exact simulations of the resonant level model. Our work provides new insights as to when one can leverage the simplicity of bosonic maps to simulate the dynamics of many-electron systems, especially those where an atomistic representation of nuclear interactions becomes essential.

1.
A.
Auerbach
,
Interacting Electrons and Quantum Magnetism
(
Springer-Verlag
,
New York
,
1998
).
2.
E.
Dagotto
,
Rev. Mod. Phys.
66
,
763
(
1994
).
3.
J.
Orenstein
and
A. J.
Millis
,
Science
288
,
468
(
2000
).
4.
P. A.
Lee
,
N.
Nagaosa
, and
X.-G.
Wen
,
Rev. Mod. Phys.
78
,
17
(
2006
).
6.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Nørskov
, and
T. F.
Jaramillo
,
Science
355
,
eaad4998
(
2017
).
7.
R. E.
Warburton
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
Chem. Rev.
122
,
10599
(
2022
).
8.
E.
Santos
and
W.
Schmickler
,
Chem. Rev.
122
,
10581
(
2022
).
9.
A.
Migliore
,
N. F.
Polizzi
,
M. J.
Therien
, and
D. N.
Beratan
,
Chem. Rev.
114
,
3381
(
2014
).
10.
J. L.
Yuly
,
C. E.
Lubner
,
P.
Zhang
,
D. N.
Beratan
, and
J. W.
Peters
,
Chem. Commun.
55
,
11823
(
2019
).
11.
A.
Pannwitz
and
O. S.
Wenger
,
Chem. Commun.
55
,
4004
(
2019
).
12.
H. L.
Rutledge
and
F. A.
Tezcan
,
Chem. Rev.
120
,
5158
(
2020
).
13.
F.
Evers
,
R.
Korytár
,
S.
Tewari
, and
J. M.
van Ruitenbeek
,
Rev. Mod. Phys.
92
,
035001
(
2019
); arXiv:1906.10449.
14.
G.
Cohen
and
M.
Galperin
,
J. Chem. Phys.
152
,
090901
(
2020
); arXiv:2001.06008.
15.
Y.
Atia
and
D.
Aharonov
,
Nat. Commun.
8
,
1572
(
2017
).
16.
H.
Lamm
and
S.
Lawrence
,
Phys. Rev. Lett.
121
,
170501
(
2018
).
17.
S.-N.
Sun
,
M.
Motta
,
R. N.
Tazhigulov
,
A. T.
Tan
,
G. K.-L.
Chan
, and
A. J.
Minnich
,
PRX Quantum
2
,
010317
(
2021
).
18.
L.
Bassman Oftelie
,
R.
Van Beeumen
,
E.
Younis
,
E.
Smith
,
C.
Iancu
, and
W. A.
de Jong
,
Mater. Theory
6
,
13
(
2022
).
19.
R.
Kapral
,
J. Phys.: Condens. Matter
27
,
073201
(
2015
).
20.
M. K.
Lee
,
P.
Huo
, and
D. F.
Coker
,
Annu. Rev. Phys. Chem.
67
,
639
(
2016
).
21.
W. P.
Schleich
,
Quantum Optics in Phase Space
(
Wiley-VCH Verlag
,
Berlin
,
2001
).
22.
C.
Gardiner
and
P.
Zoller
,
The Quantum World of Ultra-Cold Atoms and Light: Foundations of Quantum Optics
(
Imperial College Press
,
London
,
2014
).
23.
A.
Polkovnikov
,
Ann. Phys.
325
,
1790
(
2010
).
24.
J.
Schachenmayer
,
A.
Pikovski
, and
A. M.
Rey
,
Phys. Rev. X
5
,
11022
(
2015
).
26.
A.
Montoya-Castillo
and
T. E.
Markland
,
Sci. Rep.
8
,
12929
(
2018
); arXiv:1803.05561.
27.
B.
Li
and
W. H.
Miller
,
J. Chem. Phys.
137
,
154107
(
2012
).
28.
B.
Li
,
W. H.
Miller
,
T. J.
Levy
, and
E.
Rabani
,
J. Chem. Phys.
140
,
204106
(
2014
).
29.
A.
Levy
,
W.
Dou
,
E.
Rabani
, and
D. T.
Limmer
,
J. Chem. Phys.
150
,
234112
(
2019
).
30.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
916
(
1997
).
31.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
108
,
7516
(
1998
).
32.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
111
,
65
(
1999
).
33.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
34.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
35.
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
36.
M.
Thoss
,
W. H.
Miller
, and
G.
Stock
,
J. Chem. Phys.
112
,
10282
(
2000
).
37.
Y. L.
Volobuev
,
M. D.
Hack
,
M. S.
Topaler
, and
D. G.
Truhlar
,
J. Chem. Phys.
112
,
9716
(
2000
).
38.
E. A.
Coronado
,
J.
Xing
, and
W. H.
Miller
,
Chem. Phys. Lett.
349
,
521
(
2001
).
39.
J.-L.
Liao
and
G. A.
Voth
,
J. Phys. Chem. B
106
,
8449
(
2002
).
40.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
120
,
10647
(
2004
).
41.
S.
Bonella
and
D. F.
Coker
,
J. Chem. Phys.
122
,
194102
(
2005
).
42.
N.
Ananth
,
C.
Venkataraman
, and
W. H.
Miller
,
J. Chem. Phys.
127
,
084114
(
2007
).
43.
E. R.
Dunkel
,
S.
Bonella
, and
D. F.
Coker
,
J. Chem. Phys.
129
,
114106
(
2008
).
44.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
,
J. Chem. Phys.
129
,
084102
(
2008
).
45.
N.
Ananth
and
T. F.
Miller
,
J. Chem. Phys.
133
,
234103
(
2010
).
46.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
135
,
201101
(
2011
).
47.
C.-Y.
Hsieh
and
R.
Kapral
,
J. Chem. Phys.
137
,
22A507
(
2012
).
48.
A.
Kelly
,
R.
van Zon
,
J.
Schofield
, and
R.
Kapral
,
J. Chem. Phys.
136
,
084101
(
2012
); arXiv:1201.1042v2.
49.
N.
Ananth
,
J. Chem. Phys.
139
,
124102
(
2013
).
50.
J. O.
Richardson
and
M.
Thoss
,
J. Chem. Phys.
139
,
031102
(
2013
).
51.
S. J.
Cotton
and
W. H.
Miller
,
J. Phys. Chem. A
119
,
12138
(
2015
).
52.
T. J. H.
Hele
and
N.
Ananth
,
Faraday Discuss.
195
,
269
(
2016
).
53.
S. N.
Chowdhury
and
P.
Huo
,
J. Chem. Phys.
147
,
214109
(
2017
); arXiv:1706.08403.
54.
M. S.
Church
,
T. J. H.
Hele
,
G. S.
Ezra
, and
N.
Ananth
,
J. Chem. Phys.
148
,
102326
(
2018
); arXiv:1709.07474.
55.
B.
Li
,
T. J.
Levy
,
D. W. H.
Swenson
,
E.
Rabani
, and
W. H.
Miller
,
J. Chem. Phys.
138
,
104110
(
2013
).
56.
B.
Li
,
E. Y.
Wilner
,
M.
Thoss
,
E.
Rabani
, and
W. H.
Miller
,
J. Chem. Phys.
140
,
104110
(
2014
).
57.
J.
Liu
,
J. Chem. Phys.
146
,
024110
(
2017
).
58.
J.
Sun
,
S.
Sasmal
, and
O.
Vendrell
,
J. Chem. Phys.
155
,
134110
(
2021
).
59.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
60.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
62.
A.
Troisi
and
G.
Orlandi
,
Phys. Rev. Lett.
96
,
086601
(
2006
).
63.
S.
Fratini
,
D.
Mayou
, and
S.
Ciuchi
,
Adv. Funct. Mater.
26
,
2292
(
2016
).
64.
A. C.
Hewson
,
The Kondo Problem to Heavy Fermions
(
Cambridge University Press
,
Cambridge
,
1993
).
65.
D. V.
Averin
and
K. K.
Likharev
,
J. Low Temp. Phys.
62
,
345
(
1986
).
66.
C. W. J.
Beenakker
,
Phys. Rev. B
44
,
1646
(
1991
).
67.
J.
Schwinger
, in
Quantum Theory of Angular Momentum
, edited by
L. C.
Biedenharn
and
H. V.
Dam
(
Academic Press
,
New York
,
1965
), pp.
229
279
.
68.
T.
Holstein
and
H.
Primakoff
,
Phys. Rev.
58
,
1098
(
1940
).
69.
M. P. A.
Fisher
,
P. B.
Weichman
,
G.
Grinstein
, and
D. S.
Fisher
,
Phys. Rev. B
40
,
546
(
1989
).
70.
T.
Giamarchi
,
Quantum Physics in One Dimension
(
Oxford University Press
,
New York
,
2004
).
71.
Theoretical Methods for Strongly Correlated Electrons
, CRM Series in Mathematical Physics, edited by
D.
Sénéchal
,
A.-M.
Tremblay
, and
C.
Bourbonnais
(
Springer
, 2003).
72.
Theoretical Methods for Strongly Correlated Electrons
, The CRM Series in Mathematical, edited by
D.
Sénéchal
,
A.-M.
Tremblay
, and
C.
Bourbonnais
(
Springer-Verlag
,
New York
,
2004
).
73.
A. A.
Kornyshev
and
W.
Schmickler
,
J. Electroanal. Chem.
185
,
253
(
1985
).
74.
K. L.
Sebastian
,
J. Chem. Phys.
90
,
5056
(
1989
).
75.
J. K.
Norsko
,
Rep. Prog. Phys.
53
,
1253
(
1990
).
76.
I.
Kondov
,
M.
Čížek
,
C.
Benesch
,
H.
Wang
, and
M.
Thoss
,
J. Phys. Chem. C
111
,
11970
(
2007
).
77.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
78.
G.
Stock
and
M.
Thoss
,
Adv. Chem. Phys.
131
,
243
(
2005
).
79.
R.
Crespo-Otero
and
M.
Barbatti
,
Chem. Rev.
118
,
7026
(
2018
).
80.
L.
Bonnet
,
J. Chem. Phys.
153
,
174102
(
2020
).
81.
82.
G.
Stock
,
J. Chem. Phys.
103
,
1561
(
1995
).
83.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
6346
(
1997
).
84.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
121
,
3393
(
2004
).
85.
S. J.
Cotton
and
W. H.
Miller
,
J. Phys. Chem.
139
,
234112
(
2013
).
86.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
137
,
22A535
(
2012
).
87.
A.
Kelly
and
T. E.
Markland
,
J. Chem. Phys.
139
,
014104
(
2013
).
88.
A.
Kelly
,
N.
Brackbill
, and
T. E.
Markland
,
J. Chem. Phys.
142
,
094110
(
2015
).
89.
W. C.
Pfalzgraff
,
A.
Kelly
, and
T. E.
Markland
,
J. Phys. Chem. Lett.
6
,
4743
(
2015
).
90.
A.
Montoya-Castillo
and
D. R.
Reichman
,
J. Chem. Phys.
144
,
184104
(
2016
).
91.
A.
Kelly
,
A.
Montoya-Castillo
,
L.
Wang
, and
T. E.
Markland
,
J. Chem. Phys.
144
,
184105
(
2016
).
92.
A.
Montoya-Castillo
and
D. R.
Reichman
,
J. Chem. Phys.
146
,
024107
(
2017
).
93.
W. C.
Pfalzgraff
,
A.
Montoya-Castillo
,
A.
Kelly
, and
T. E.
Markland
,
J. Chem. Phys.
150
,
244109
(
2019
).
94.
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
,
J. Chem. Phys.
150
,
034101
(
2019
).
95.
E.
Mulvihill
,
X.
Gao
,
Y.
Liu
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
,
J. Chem. Phys.
151
,
074103
(
2019
).
96.
E.
Mulvihill
,
K. M.
Lenn
,
X.
Gao
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
,
J. Chem. Phys.
154
,
204109
(
2021
).
97.
E.
Mulvihill
and
E.
Geva
,
J. Phys. Chem. B
125
,
9834
(
2021
).
98.
E.
Mulvihill
and
E.
Geva
,
J. Chem. Phys.
156
,
044119
(
2022
).
99.
W. H.
Miller
and
K. A.
White
,
J. Chem. Phys.
84
,
5059
(
1986
).
100.
G. D.
Mahan
,
Many-Particle Physics
(
Plenum Press
,
1990
).
101.
H. J. W.
Haug
and
A.-P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
, 2nd ed. (
Springer
,
Berlin
,
2008
).
102.
103.
J. P.
Blaizot
and
E. R.
Marshalek
,
Nucl. Phys. A
309
,
422
(
1978
).
104.
J.
Liu
,
J. Chem. Phys.
145
,
204105
(
2016
).
105.
J. E.
Runeson
and
J. O.
Richardson
,
J. Chem. Phys.
151
,
044119
(
2019
).
106.
J. E.
Runeson
and
J. O.
Richardson
,
J. Chem. Phys.
152
,
084110
(
2020
).
107.
D.
Bossion
,
W.
Ying
,
S. N.
Chowdhury
, and
P.
Huo
,
J. Chem. Phys.
157
,
084105
(
2022
).
108.
J. M.
Radcliffe
,
J. Phys. A: Gen. Phys.
4
,
313
(
1971
).
109.
H.
Kuratsuji
and
T.
Suzuki
,
J. Math. Phys.
21
,
472
(
1980
).
110.
A.
Lucke
,
C. H.
Mak
, and
J. T.
Stockburger
,
J. Chem. Phys.
111
,
10843
(
1999
).
111.
X.
Song
and
T.
Van Voorhis
,
J. Chem. Phys.
124
,
134104
(
2006
).
112.
E.
Pollak
and
E.
Martin-Fierro
,
J. Chem. Phys.
126
,
164107
(
2007
).
114.
B. B.
Smith
and
J. T.
Hynes
,
J. Chem. Phys.
99
,
6517
(
1993
).
115.
Y. G.
Boroda
and
G. A.
Voth
,
J. Chem. Phys.
104
,
6168
(
1996
).
116.
M.
Thoss
,
I.
Kondov
, and
H.
Wang
,
Chem. Phys.
304
,
169
(
2004
).
117.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
118.
K.
Imre
,
E.
Özizmir
,
M.
Rosenbaum
, and
P. F.
Zweifel
,
J. Math. Phys.
8
,
1097
(
1967
).
You do not currently have access to this content.