Transfer integral is a crucial parameter that determines the charge mobility of organic semiconductors, and it is very sensitive to molecular packing motifs. The quantum chemical calculation of transfer integrals for all the molecular pairs in organic materials is usually an unaffordable task; fortunately, it can be accelerated by the data-driven machine learning method now. In this work, we develop machine learning models based on artificial neutral networks to predict transfer integrals accurately and efficiently for four typical organic semiconductor molecules: quadruple thiophene (QT), pentacene, rubrene, and dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). We test various forms of features and labels and evaluate the accuracy of different models. With the implementation of a data augmentation scheme, we have achieved a very high accuracy with the determination coefficient of 0.97 and mean absolute error of 4.5 meV for QT, and similar accuracy for the other three molecules. We apply these models to studying charge transport in organic crystals with dynamic disorders at 300 K and obtain the charge mobility and anisotropy in perfect agreement with the brutal force quantum chemical calculation. If more molecular packings representing the amorphous phase of organic solids are supplemented to the dataset, the current models can be refined to study charge transport in organic thin films with polymorphs and static disorders.

1.
H.
Sirringhaus
, “
Organic field-effect transistors: The path beyond amorphous silicon
,”
Adv. Mater.
26
,
1319
1335
(
2014
).
2.
Y.
Diao
,
B. C.-K.
Tee
,
G.
Giri
,
J.
Xu
,
D. H.
Kim
,
H. A.
Becerril
,
R. M.
Stoltenberg
,
T. H.
Lee
,
G.
Xue
,
S. C. B.
Mannsfeld
, and
Z.
Bao
, “
Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains
,”
Nat. Mater.
12
,
665
671
(
2013
).
3.
J.
Rivnay
,
L. H.
Jimison
,
J. E.
Northrup
,
M. F.
Toney
,
R.
Noriega
,
S.
Lu
,
T. J.
Marks
,
A.
Facchetti
, and
A.
Salleo
, “
Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films
,”
Nat. Mater.
8
,
952
958
(
2009
).
4.
T.
Holstein
, “
Studies of polaron motion: Part II. The ‘small’ polaron
,”
Ann. Phys.
8
,
343
389
(
1959
).
5.
N. W.
Ashcroft
and
D.
Mermin
,
Solid State Physics
(
Holt, Reinhart and Winston
,
New York
,
1976
).
6.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
,
325
342
(
1959
).
7.
K.
Marumoto
,
S.-i.
Kuroda
,
T.
Takenobu
, and
Y.
Iwasa
, “
Spatial extent of wave functions of gate-induced hole carriers in pentacene field-effect devices as investigated by electron spin resonance
,”
Phys. Rev. Lett.
97
,
256603
(
2006
).
8.
R. A.
Marcus
, “
On the theory of oxidation-reduction reactions involving electron transfer. I
,”
J. Chem. Phys.
24
,
966
978
(
1956
).
9.
M.
Bixon
and
J.
Jortner
, “
Non-Arrhenius temperature dependence of electron-transfer rates
,”
J. Phys. Chem.
95
,
1941
1944
(
1991
).
10.
G.
Nan
,
X.
Yang
,
L.
Wang
,
Z.
Shuai
, and
Y.
Zhao
, “
Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene
,”
Phys. Rev. B
79
,
115203
(
2009
).
11.
E. F.
Valeev
,
V.
Coropceanu
,
D. A.
Da Silva Filho
,
S.
Salman
, and
J.-L.
Brédas
, “
Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors
,”
J. Am. Chem. Soc.
128
,
9882
9886
(
2006
).
12.
X.
Zheng
,
H.
Geng
,
Y.
Yi
,
Q.
Li
,
Y.
Jiang
,
D.
Wang
, and
Z.
Shuai
, “
Understanding lattice strain-controlled charge transport in organic semiconductors: A computational study
,”
Adv. Funct. Mater.
24
,
5531
5540
(
2014
).
13.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet – A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
14.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
15.
P.
Reiser
,
M.
Konrad
,
A.
Fediai
,
S.
Léon
,
W.
Wenzel
, and
P.
Friederich
, “
Analyzing dynamical disorder for charge transport in organic semiconductors via machine learning
,”
J. Chem. Theory Comput.
17
,
3750
3759
(
2021
).
16.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
17.
J.
Li
,
M. S.
Deng
,
D. V.
Voronine
,
S.
Mukamel
, and
J.
Jiang
, “
Two-dimensional near ultraviolet (2DNUV) spectroscopic probe of structural-dependent exciton dynamics in a protein
,”
J. Phys. Chem. B
119
,
1314
1322
(
2015
).
18.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
, “
By-passing the Kohn-Sham equations with machine learning
,”
Nat. Commun.
8
,
872
(
2017
).
19.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
20.
S.
Atahan-Evrenk
and
F. B.
Atalay
, “
Prediction of intramolecular reorganization energy using machine learning
,”
J. Phys. Chem. A
123
,
7855
7863
(
2019
).
21.
O.
Çaylak
,
A.
Yaman
, and
B.
Baumeier
, “
Evolutionary approach to constructing a deep feedforward neural network for prediction of electronic coupling elements in molecular materials
,”
J. Chem. Theory Comput.
15
,
1777
1784
(
2019
).
22.
J.
Lederer
,
W.
Kaiser
,
A.
Mattoni
, and
A.
Gagliardi
, “
Machine learning–based charge transport computation for pentacene
,”
Adv. Theory Simul.
2
,
1800136
(
2019
).
23.
M.
Rinderle
,
W.
Kaiser
,
A.
Mattoni
, and
A.
Gagliardi
, “
Machine-learned charge transfer integrals for multiscale simulations in organic thin films
,”
J. Phys. Chem. C
124
,
17733
17743
(
2020
).
24.
C.-I.
Wang
,
M.
Braza
,
E.
Braza
,
G. C.
Claudio
,
R. B.
Nellas
, and
C. P.
Hsu
, “
Machine learning for predicting electron transfer coupling
,”
J. Phys. Chem. A
123
,
7792
7802
(
2019
).
25.
C.-I.
Wang
,
I.
Joanito
,
C. F.
Lan
, and
C. P.
Hsu
, “
Artificial neural networks for predicting charge transfer coupling
,”
J. Chem. Phys.
153
,
214113
(
2020
).
26.
X.
Bai
,
X.
Guo
, and
L. J.
Wang
, “
Machine learning approach to calculate electronic couplings between quasi-diabatic molecular orbitals: The case of DNA
,”
J. Phys. Chem. Lett.
12
,
10457
10464
(
2021
).
27.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Pálla
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C. 01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
29.
B.
Baumeier
,
J.
Kirkpatrick
, and
D.
Andrienko
, “
Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies
,”
Phys. Chem. Chem. Phys.
12
,
11103
11113
(
2010
).
30.
N. E.
Jackson
, “
Coarse-graining organic semiconductors: The path to multiscale design
,”
J. Phys. Chem. B
125
,
485
496
(
2020
).
31.
J. S.
Binkley
,
J. A.
Pople
, and
W. J.
Hehre
, “
Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements
,”
J. Am. Chem. Soc.
102
,
939
947
(
1980
).
32.
M. S.
Gordon
,
J. S.
Binkley
,
J. A.
Pople
,
W.
Pietro
, and
W.
Hehre
, “
Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements
,”
J. Am. Chem. Soc.
104
,
2797
2803
(
1982
).
33.
J. H.
Friedman
, “
Stochastic gradient boosting
,”
Comput. Stat. Data Anal.
38
,
367
378
(
2002
).
34.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
É.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn Res.
12
,
2825
2830
(
2011
).
35.
L.
Alzubaidi
,
J. L.
Zhang
,
A. J.
Humaidi
,
A.
Al-Dujaili
,
Y.
Duan
,
O.
Al-Shamma
,
J.
Santamaría
,
M. A.
Fadhel
,
M.
Al-Amidie
, and
L.
Farhan
, “
Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
,”
J. Big Data
8
,
53
(
2021
).
36.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
dÁlché-Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
,
2019
), Vol. 32, pp.
8024
8035
.
37.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 [cs.LG] (
2014
).
38.
J.
Westermayr
,
M.
Gastegger
,
M. F. S. J.
Menger
,
S.
Mai
,
L.
González
, and
P.
Marquetand
, “
Machine learning enables long time scale molecular photodynamics simulations
,”
Chem. Sci.
10
,
8100
8107
(
2019
).

Supplementary Material

You do not currently have access to this content.