Despite more than a century of study, consensus on the molecular basis of allostery remains elusive. A comparison of allosteric and non-allosteric members of a protein family can shed light on this important regulatory mechanism, and the bacterial biotin protein ligases, which catalyze post-translational biotin addition, provide an ideal system for such comparison. While the Class I bacterial ligases only function as enzymes, the bifunctional Class II ligases use the same structural architecture for an additional transcription repression function. This additional function depends on allosterically activated homodimerization followed by DNA binding. In this work, we used experimental, computational network, and bioinformatics analyses to uncover distinguishing features that enable allostery in the Class II biotin protein ligases. Experimental studies of the Class II Escherichia coli protein indicate that catalytic site residues are critical for both catalysis and allostery. However, allostery also depends on amino acids that are more broadly distributed throughout the protein structure. Energy-based community network analysis of representative Class I and Class II proteins reveals distinct residue community architectures, interactions among the communities, and responses of the network to allosteric effector binding. Bioinformatics mutual information analyses of multiple sequence alignments indicate distinct networks of coevolving residues in the two protein families. The results support the role of divergent local residue community network structures both inside and outside of the conserved enzyme active site combined with distinct inter-community interactions as keys to the emergence of allostery in the Class II biotin protein ligases.

1.
C.
Bohr
,
K.
Hasselbalch
, and
A.
Krogh
, “
Concerning a biologically important relationship—The influence of the carbon dioxide content of blood on its oxygen binding
,”
Skand. Arch. Physiol.
16
,
402
412
(
1904
).
2.
J.
Monod
,
J.-P.
Changeux
, and
F.
Jacob
, “
Allosteric proteins and cellular control systems
,”
J. Mol. Biol.
6
,
306
329
(
1963
).
3.
S.
Meinhardt
,
M. W.
Manley
,
D. J.
Parente
, and
L.
Swint-Kruse
, “
Rheostats and toggle switches for modulating protein function
,”
PLoS One
8
(
12
),
e83502
(
2013
).
4.
A.
Hadzipasic
,
C.
Wilson
,
V.
Nguyen
,
N.
Kern
,
C.
Kim
,
W.
Pitsawong
,
J.
Villali
,
Y.
Zheng
, and
D.
Kern
, “
Ancient origins of allosteric activation in a Ser-Thr kinase
,”
Science
367
(
6480
),
912
917
(
2020
).
5.
N. R.
Beattie
,
N. D.
Keul
,
T. N.
Hicks Sirmans
,
W. E.
McDonald
,
T. M.
Talmadge
,
R.
Taujale
,
N.
Kannan
, and
Z. A.
Wood
, “
Conservation of atypical allostery in C. elegans UDP-glucose dehydrogenase
,”
ACS Omega
4
(
15
),
16318
16329
(
2019
).
6.
D.
Wl
, The PyMOL Molecular Graphics System,
2002
.
7.
L.
Tong
, “
Structure and function of biotin-dependent carboxylases
,”
Cell. Mol. Life Sci.
70
(
5
),
863
891
(
2013
).
8.
D. A.
Rodionov
,
A. A.
Mironov
, and
M. S.
Gelfand
, “
Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea
,”
Genome Res.
12
(
10
),
1507
1516
(
2002
).
9.
M. D.
Lane
,
K. L.
Rominger
,
D. L.
Young
, and
F.
Lynen
, “
The enzymatic synthesis of holotranscarboxylase from apotranscarboxylase and (+)-biotin. II. Investigation of the reaction mechanism
,”
J. Biol. Chem.
239
,
2865
2871
(
1964
).
10.
D. F.
Barker
and
A. M.
Campbell
, “
Genetic and biochemical characterization of the birA gene and its product: Evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli
,”
J. Mol. Biol.
146
(
4
),
469
492
(
1981
).
11.
D. F.
Barker
and
A. M.
Campbell
, “
The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase
,”
J. Mol. Biol.
146
(
4
),
451
467
(
1981
).
12.
O.
Prakash
and
M. A.
Eisenberg
, “
Biotinyl 5′-adenylate: Corepressor role in the regulation of the biotin genes of Escherichia coli k-12
,”
Proc. Natl. Acad. Sci. U. S. A.
76
(
11
),
5592
5595
(
1979
).
13.
E.
Eisenstein
and
D.
Beckett
, “
Dimerization of the Escherichia coli biotin repressor: Corepressor function in protein assembly
,”
Biochemistry
38
(
40
),
13077
13084
(
1999
).
14.
L. H.
Weaver
,
K.
Kwon
,
D.
Beckett
, and
B. W.
Matthews
, “
Corepressor-induced organization and assembly of the biotin repressor: A model for allosteric activation of a transcriptional regulator
,”
Proc. Natl. Acad. Sci. U. S. A.
98
(
11
),
6045
6050
(
2001
).
15.
L. H.
Weaver
,
K.
Kwon
,
D.
Beckett
, and
B. W.
Matthews
, “
Competing protein: Protein interactions are proposed to control the biological switch of the E. coli biotin repressor
,”
Protein Sci.
10
(
12
),
2618
2622
(
2001
).
16.
B.
Bagautdinov
,
Y.
Matsuura
,
S.
Bagautdinova
, and
N.
Kunishima
, “
Protein biotinylation visualized by a complex structure of biotin protein ligase with a substrate
,”
J. Biol. Chem.
283
(
21
),
14739
14750
(
2008
).
17.
N. R.
Pendini
,
M. Y.
Yap
,
D. A.
Traore
,
S. W.
Polyak
,
N. P.
Cowieson
,
A.
Abell
,
G. W.
Booker
,
J. C.
Wallace
,
J. A.
Wilce
, and
M. C.
Wilce
, “
Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: An antibiotic target
,”
Protein Sci.
22
(
6
),
762
773
(
2013
).
18.
Q.
Ma
,
Y.
Akhter
,
M.
Wilmanns
, and
M. T.
Ehebauer
, “
Active site conformational changes upon reaction intermediate biotinyl-5′-AMP binding in biotin protein ligase from Mycobacterium tuberculosis
,”
Protein Sci.
23
(
7
),
932
939
(
2014
).
19.
Z. A.
Wood
,
L. H.
Weaver
,
P. H.
Brown
,
D.
Beckett
, and
B. W.
Matthews
, “
Co-repressor induced order and biotin repressor dimerization: A case for divergent followed by convergent evolution
,”
J. Mol. Biol.
357
(
2
),
509
523
(
2006
).
20.
S.
Naganathan
and
D.
Beckett
, “
Nucleation of an allosteric response via ligand-induced loop folding
,”
J. Mol. Biol.
373
(
1
),
96
111
(
2007
).
21.
C.
Eginton
,
S.
Naganathan
, and
D.
Beckett
, “
Sequence-function relationships in folding upon binding
,”
Protein Sci.
24
(
2
),
200
211
(
2015
).
22.
K. P.
Wilson
,
L. M.
Shewchuk
,
R. G.
Brennan
,
A. J.
Otsuka
, and
B. W.
Matthews
, “
Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains
,”
Proc. Natl. Acad. Sci. U. S. A.
89
(
19
),
9257
9261
(
1992
).
23.
J.
Wang
,
R.
Samanta
,
G.
Custer
,
C.
Look
,
S.
Matysiak
, and
D.
Beckett
, “
Tuning allostery through integration of disorder to order with a residue network
,”
Biochemistry
59
(
6
),
790
801
(
2020
).
24.
B.
Bagautdinov
,
C.
Kuroishi
,
M.
Sugahara
, and
N.
Kunishima
, “
Crystal structures of biotin protein ligase from Pyrococcus horikoshii OT3 and its complexes: Structural basis of biotin activation
,”
J. Mol. Biol.
353
(
2
),
322
333
(
2005
).
25.
T. P.
Soares da Costa
,
W.
Tieu
,
M. Y.
Yap
,
N. R.
Pendini
,
S. W.
Polyak
,
D.
Sejer Pedersen
,
R.
Morona
,
J. D.
Turnidge
,
J. C.
Wallace
,
M. C. J.
Wilce
 et al, “
Selective inhibition of biotin protein ligase from Staphylococcus aureus
,”
J. Biol. Chem.
287
(
21
),
17823
17832
(
2012
).
26.
Y.
Xu
and
D.
Beckett
, “
Kinetics of biotinyl-5′-adenylate synthesis catalyzed by the Escherichia coli repressor of biotin biosynthesis and the stability of the enzyme-product complex
,”
Biochemistry
33
(
23
),
7354
7360
(
1994
).
27.
C.
Eginton
,
W. J.
Cressman
,
S.
Bachas
,
H.
Wade
, and
D.
Beckett
, “
Allosteric coupling via distant disorder-to-order transitions
,”
J. Mol. Biol.
427
(
8
),
1695
1704
(
2015
).
28.
E.
Nenortas
and
D.
Beckett
, “
Purification and characterization of intact and truncated forms of the Escherichia coli biotin carboxyl carrier subunit of acetyl-coa carboxylase
,”
J. Biol. Chem.
271
(
13
),
7559
7567
(
1996
).
29.
P. R.
Adikaram
and
D.
Beckett
, “
Functional versatility of a single protein surface in two protein:protein interactions
,”
J. Mol. Biol.
419
(
3-4
),
223
233
(
2012
).
30.
C.
He
,
G.
Custer
,
J.
Wang
,
S.
Matysiak
, and
D.
Beckett
, “
Superrepression through altered corepressor-activated protein:protein interactions
,”
Biochemistry
57
(
7
),
1119
1129
(
2018
).
31.
C. M.
Buslje
,
J.
Santos
,
J. M.
Delfino
, and
M.
Nielsen
, “
Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information
,”
Bioinformatics
25
(
9
),
1125
1131
(
2009
).
32.
B.
Zhang
and
S.
Srihari
, “
Properties of binary vector dissimilarity measures
,”
paper presented at the Proceedings of JCIS International Conference on Computer Vision, Pattern Recognition, and Image Processing
,
2003
.
33.
P. R.
Adikaram
and
D.
Beckett
, “
Protein:protein interactions in control of a transcriptional switch
,”
J. Mol. Biol.
425
(
22
),
4584
4594
(
2013
).
34.
S. D.
Dunn
,
L. M.
Wahl
, and
G. B.
Gloor
, “
Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction
,”
Bioinformatics
24
(
3
),
333
340
(
2008
).
35.
A. A.
Fodor
and
R. W.
Aldrich
, “
Influence of conservation on calculations of amino acid covariance in multiple sequence alignments
,”
Proteins
56
(
2
),
211
221
(
2004
).
36.
I.
Anishchenko
,
S.
Ovchinnikov
,
H.
Kamisetty
, and
D.
Baker
, “
Origins of coevolution between residues distant in protein 3D structures
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
34
),
9122
9127
(
2017
).
37.
J.
Wang
,
G.
Custer
,
D.
Beckett
, and
S.
Matysiak
, “
Long distance modulation of disorder-to-order transitions in protein allostery
,”
Biochemistry
56
(
34
),
4478
4488
(
2017
).
38.
J.
Wang
and
D.
Beckett
, “
A conserved regulatory mechanism in bifunctional biotin protein ligases
,”
Protein Sci.
26
(
8
),
1564
1573
(
2017
).
39.
A. N.
Naganathan
, “
Modulation of allosteric coupling by mutations: From protein dynamics and packing to altered native ensembles and function
,”
Curr. Opin. Struct. Biol.
54
,
1
9
(
2019
).
40.
J.
Abbott
and
D.
Beckett
, “
Cooperative binding of the Escherichia coli repressor of biotin biosynthesis to the biotin operator sequence
,”
Biochemistry
32
(
37
),
9649
9656
(
1993
).
41.
A.
Fiser
,
R. K. G.
Do
, and
A.
Šali
, “
Modeling of loops in protein structures
,”
Protein Sci.
9
(
9
),
1753
1773
(
2000
).
42.
B.
Webb
and
A.
Sali
, “
Comparative protein structure modeling using MODELLER
,”
Curr. Protoc. Bioinf.
54
,
5.6.1
5.6.37
(
2016
).
43.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
, “
GROMACS: A message-passing parallel molecular dynamics implementation
,”
Comput. Phys. Commun.
91
(
1–3
),
43
56
(
1995
).
44.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
(
16
),
1701
1718
(
2005
).
45.
L.
Wang
,
R. A.
Friesner
, and
B. J.
Berne
, “
Replica exchange with solute scaling: A more efficient version of replica exchange with solute tempering (REST2)
,”
J. Phys. Chem. B
115
(
30
),
9431
9438
(
2011
).
46.
G.
Bussi
, “
Hamiltonian replica exchange in GROMACS: A flexible implementation
,”
Mol. Phys.
112
(
3–4
),
379
384
(
2014
).
47.
M.
Bonomi
,
G.
Bussi
,
C.
Camilloni
,
G. A.
Tribello
,
P.
Banáš
,
A.
Barducci
,
M.
Bernetti
,
P. G.
Bolhuis
,
S.
Bottaro
,
D.
Branduardi
 et al, “
Promoting transparency and reproducibility in enhanced molecular simulations
,”
Nat. Methods
16
(
8
),
670
673
(
2019
).
48.
A. A. S. T.
Ribeiro
and
V.
Ortiz
, “
Energy propagation and network energetic coupling in proteins
,”
J. Phys. Chem. B
119
(
5
),
1835
1846
(
2015
).
49.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
(
2
),
167
256
(
2003
).
50.
M. E. J.
Newman
,
Networks: An Introduction
(
Oxford University Press
,
Oxford, NY
,
2010
).
51.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci.
99
(
12
),
7821
(
2002
).
52.
Centrality Measures Based on Current Flow. STACS25
, edited by
V.
Diekert
and
B.
Durand
(
Springer
,
Berlin, Heidelberg
,
2005
).
53.
E. W.
Sayers
,
J.
Beck
,
E. E.
Bolton
,
D.
Bourexis
,
J. R.
Brister
,
K.
Canese
,
D. C.
Comeau
,
K.
Funk
,
S.
Kim
,
W.
Klimke
 et al, “
Database resources of the national center for biotechnology information
,”
Nucleic Acids Res.
49
(
D1
),
D10
D17
(
2021
).
54.
F.
Madeira
,
Y. m.
Park
,
J.
Lee
,
N.
Buso
,
T.
Gur
,
N.
Madhusoodanan
,
P.
Basutkar
,
A. R. N.
Tivey
,
S. C.
Potter
,
R. D.
Finn
 et al, “
The EMBL-EBI search and sequence analysis tools APIs in 2019
,”
Nucleic Acids Res.
47
(
W1
),
W636
W641
(
2019
).
55.
A. M.
Waterhouse
,
J. B.
Procter
,
D. M. A.
Martin
,
M.
Clamp
, and
G. J.
Barton
, “
Jalview version 2—A multiple sequence alignment editor and analysis workbench
,”
Bioinformatics
25
(
9
),
1189
1191
(
2009
).
56.
E. A.
Colell
,
J. A.
Iserte
,
F. L.
Simonetti
, and
C.
Marino-Buslje
, “
MISTIC2: Comprehensive server to study coevolution in protein families
,”
Nucleic Acids Res.
46
,
W323
(
2018
).
57.
T.
Cover
and
A.
Thomas
,
Elements of Information Theory
, 2nd ed. (
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2006
).

Supplementary Material

You do not currently have access to this content.