This study combines molecular dynamics (MD) simulations with small angle x-ray scattering (SAXS) measurements to investigate the range of conformations that can be adopted by a pH/ionic strength (IS) sensitive protein and to quantify its distinct populations in solution. To explore how the conformational distribution of proteins may be modified in the environmental niches of biological media, we focus on the periplasmic ferric binding protein A (FbpA) from Haemophilus influenzae involved in the mechanism by which bacteria capture iron from higher organisms. We examine iron-binding/release mechanisms of FbpA in varying conditions simulating its biological environment. While we show that these changes fall within the detectable range for SAXS as evidenced by differences observed in the theoretical scattering patterns calculated from the crystal structure models of apo and holo forms, detection of conformational changes due to the point mutation D52A and changes in ionic strength (IS) from SAXS scattering profiles have been challenging. Here, to reach conclusions, statistical analyses with SAXS profiles and results from different techniques were combined in a complementary fashion. The SAXS data complemented by size exclusion chromatography point to multiple and/or alternative conformations at physiological IS, whereas they are well-explained by single crystallographic structures in low IS buffers. By fitting the SAXS data with unique conformations sampled by a series of MD simulations under conditions mimicking the buffers, we quantify the populations of the occupied substates. We also find that the D52A mutant that we predicted by coarse-grained computational modeling to allosterically control the iron binding site in FbpA, responds to the environmental changes in our experiments with conformational selection scenarios that differ from those of the wild type.

1.
Z.
Sayers
,
B.
Avşar
,
E.
Cholak
, and
I.
Karmous
,
Biochim. Biophys. Acta, Gen. Subj.
1861
,
3671
(
2017
).
2.
A. R.
Atilgan
and
C.
Atilgan
,
Curr. Opin. Struct. Biol.
72
,
79
(
2022
).
3.
R.
Crichton
,
Iron Metabolism: From Molecular Mechanisms to Clinical Consequences
(
John Wiley and Sons
,
2016
).
4.
S.
Dev
and
J. L.
Babitt
,
Hemodialysis Int.
21
,
S6
(
2017
).
5.
K. D.
Krewulak
and
H. J.
Vogel
,
Biochim. Biophys. Acta, Biomembr.
1778
,
1781
(
2008
).
6.
W.
Neumann
,
R. C.
Hadley
, and
E. M.
Nolan
,
Essays Biochem.
61
,
211
(
2017
).
7.
A. D.
Sheftel
,
A. B.
Mason
, and
P.
Ponka
,
Biochim. Biophys. Acta, Gen. Subj.
1820
,
161
(
2012
).
8.
C. M.
Bruns
,
D. S.
Anderson
,
K. G.
Vaughan
,
P. A.
Williams
,
A. J.
Nowalk
,
D. E.
McRee
, and
T. A.
Mietzner
,
Biochemistry
40
,
15631
(
2001
).
9.
N.
Noinaj
,
N. C.
Easley
,
M.
Oke
,
N.
Mizuno
,
J.
Gumbart
,
E.
Boura
,
A. N.
Steere
,
O.
Zak
,
P.
Aisen
,
E.
Tajkhorshid
,
R. W.
Evans
,
A. R.
Gorringe
,
A. B.
Mason
,
A. C.
Steven
, and
S. K.
Buchanan
,
Nature
483
,
53
(
2012
).
10.
N.
Yang
,
H.
Zhang
,
M.
Wang
,
Q.
Hao
, and
H.
Sun
,
Sci. Rep.
2
,
999
(
2012
).
12.
S.
Dhungana
,
D. S.
Anderson
,
T. A.
Mietzner
, and
A. L.
Crumbliss
,
Biochemistry
44
,
9606
(
2005
).
13.
P.
Aisen
and
I.
Listowsky
,
Annu. Rev. Biochem.
49
,
357
(
1980
).
14.
O.
Sensoy
,
A. R.
Atilgan
, and
C.
Atilgan
,
Phys. Chem. Chem. Phys.
19
,
6064
(
2017
).
15.
S. R.
Shouldice
,
D. R.
Dougan
,
R. J.
Skene
,
L. W.
Tari
,
D. E.
McRee
,
R.-h.
Yu
, and
A. B.
Schryvers
,
J. Biol. Chem.
278
,
11513
(
2003
).
16.
C. H.
Taboy
,
K. G.
Vaughan
,
T. A.
Mietzner
,
P.
Aisen
, and
A. L.
Crumbliss
,
J. Biol. Chem.
276
,
2719
(
2001
).
17.
H.
Abdizadeh
,
A. R.
Atilgan
,
C.
Atilgan
, and
B.
Dedeoglu
,
Metallomics
9
,
1513
(
2017
).
18.
C. M.
Bruns
,
A. J.
Nowalk
,
A. S.
Arvai
,
M. A.
McTigue
,
K. G.
Vaughan
,
T. A.
Mietzner
, and
D. E.
McRee
,
Nat. Struct. Biol.
4
,
919
(
1997
).
19.
H. K.
Khambati
,
T. F.
Moraes
,
J.
Singh
,
S. R.
Shouldice
,
R.-h.
Yu
, and
A. B.
Schryvers
,
Biochem. J.
432
,
57
(
2010
).
20.
G.
Guven
,
A. R.
Atilgan
, and
C.
Atilgan
,
J. Phys. Chem. B
118
,
11677
(
2014
).
21.
S. A. L.
Tom-Yew
,
D. T.
Cui
,
E. G.
Bekker
, and
M. E. P.
Murphy
,
J. Biol. Chem.
280
,
9283
(
2005
).
22.
A. G.
Khan
,
S. R.
Shouldice
,
S. D.
Kirby
,
R.-h.
Yu
,
L. W.
Tari
, and
A. B.
Schryvers
,
Biochem. J.
404
,
217
(
2007
).
23.
S. R.
Shouldice
,
R. J.
Skene
,
D. R.
Dougan
,
D. E.
McRee
,
L. W.
Tari
, and
A. B.
Schryvers
,
Biochemistry
42
,
11908
(
2003
).
24.
M.
Gerstein
,
B. F.
Anderson
,
G. E.
Norris
,
E. N.
Baker
,
A. M.
Lesk
, and
C.
Chothia
,
J. Mol. Biol.
234
,
357
(
1993
).
25.
B.
Mao
and
J. A.
McCammon
,
J. Biol. Chem.
258
,
12543
(
1983
).
26.
C.
Atilgan
and
A. R.
Atilgan
,
PLoS Comput. Biol.
5
,
e1000544
(
2009
).
27.
B. K.
Fındık
,
U.
Cilesiz
,
S. K.
Bali
,
C.
Atilgan
,
V.
Aviyente
, and
B.
Dedeoglu
,
Org. Biomol. Chem.
20
,
8766
(
2022
).
28.
S.
Da Vela
and
D. I.
Svergun
,
Curr. Res. Struct. Biol.
2
,
164
(
2020
).
29.
C. E.
Blanchet
and
D. I.
Svergun
,
Annu. Rev. Phys. Chem.
64
,
37
(
2013
).
30.
J.
Blobel
,
P.
Bernadó
,
D. I.
Svergun
,
R.
Tauler
, and
M.
Pons
,
J. Am. Chem. Soc.
131
,
4378
(
2009
).
31.
W.
Shang
,
I.
Ivanov
,
D. I.
Svergun
,
O. Y.
Borbulevych
,
A. M.
Aleem
,
S.
Stehling
,
J.
Jankun
,
H.
Kühn
, and
E.
Skrzypczak-Jankun
,
J. Mol. Biol.
409
,
654
(
2011
).
33.
D. E.
Petrenko
,
V. I.
Timofeev
,
V. V.
Britikov
,
E. V.
Britikova
,
S. Y.
Kleymenov
,
A. V.
Vlaskina
,
I. P.
Kuranova
,
A. G.
Mikhailova
, and
T. V.
Rakitina
,
Biology
10
,
1021
(
2021
).
34.
D. D.
Boehr
and
P. E.
Wright
,
Science
320
,
1429
(
2008
).
35.
H. N.
Motlagh
,
J. O.
Wrabl
,
J.
Li
, and
V. J.
Hilser
,
Nature
508
,
331
(
2014
).
36.
S. K.
Huang
,
A.
Pandey
,
D. P.
Tran
,
N. L.
Villanueva
,
A.
Kitao
,
R. K.
Sunahara
,
A.
Sljoka
, and
R. S.
Prosser
,
Cell
184
,
1884
(
2021
).
37.
M.
Chan-Yao-Chong
,
C.
Deville
,
L.
Pinet
,
C.
van Heijenoort
,
D.
Durand
, and
T.
Ha-Duong
,
Biophys. J.
116
,
1216
(
2019
).
38.
P.
Cheng
,
J.
Peng
, and
Z.
Zhang
,
Biophys. J.
112
,
1295
(
2017
).
39.
A. H.
Larsen
,
Y.
Wang
,
S.
Bottaro
,
S.
Grudinin
,
L.
Arleth
, and
K.
Lindorff-Larsen
,
PLoS Comput. Biol.
16
,
e1007870
(
2020
).
40.
F.
Meersman
,
C.
Atilgan
,
A. J.
Miles
,
R.
Bader
,
W.
Shang
,
A.
Matagne
,
B. A.
Wallace
, and
M. H. J.
Koch
,
Biophys. J.
99
,
2255
(
2010
).
41.
F.
Pesce
and
K.
Lindorff-Larsen
,
Biophys. J.
120
,
5124
(
2021
).
42.
J.
Sambrook
,
E. F.
Fritsch
, and
T.
Maniatis
,
Molecular Cloning: A Laboratory Manual
, 2nd ed. (
Cold Spring Harbor Laboratory Press
,
1989
).
43.
E.
Gasteiger
,
C.
Hoogland
,
A.
Gattiker
,
M. R.
Wilkins
,
R. D.
Appel
, and
A.
Bairoch
,
The Proteomics Protocols Handbook
(
Humana Press
,
2005
), Vol. 571.
44.
S.
Raran-Kurussi
,
S.
Cherry
,
D.
Zhang
, and
D. S.
Waugh
,
Heterologous Gene Expression in E. coli
(
Springer
,
2017
), p.
221
.
45.
T. V.
Updyke
and
S. C.
Engelhorn
, U.S. patent USP1996115578180 (
November 8, 2000
).
46.
C. E.
Blanchet
,
A.
Spilotros
,
F.
Schwemmer
,
M. A.
Graewert
,
A.
Kikhney
,
C. M.
Jeffries
,
D.
Franke
,
D.
Mark
,
R.
Zengerle
,
F.
Cipriani
,
S.
Fiedler
,
M.
Roessle
, and
D. I.
Svergun
,
J. Appl. Crystallogr.
48
,
431
(
2015
).
47.
N. R.
Hajizadeh
,
D.
Franke
, and
D. I.
Svergun
,
J. Synchrotron Radiat.
25
,
906
(
2018
).
48.
M. A.
Graewert
,
D.
Franke
,
C. M.
Jeffries
,
C. E.
Blanchet
,
D.
Ruskule
,
K.
Kuhle
,
A.
Flieger
,
B.
Schäfer
,
B.
Tartsch
, and
R.
Meijers
,
Sci. Rep.
5
,
10734
(
2015
).
49.
C. M.
Jeffries
,
M. A.
Graewert
,
C. E.
Blanchet
,
D. B.
Langley
,
A. E.
Whitten
, and
D. I.
Svergun
,
Nat. Protoc.
11
,
2122
(
2016
).
50.
A. R.
Round
,
D.
Franke
,
S.
Moritz
,
R.
Huchler
,
M.
Fritsche
,
D.
Malthan
,
R.
Klaering
,
D. I.
Svergun
, and
M.
Roessle
,
J. Appl. Crystallogr.
41
,
913
(
2008
).
51.
K.
Manalastas-Cantos
,
P. V.
Konarev
,
N. R.
Hajizadeh
,
A. G.
Kikhney
,
M. V.
Petoukhov
,
D. S.
Molodenskiy
,
A.
Panjkovich
,
H. D. T.
Mertens
,
A.
Gruzinov
,
C.
Borges
,
C. M.
Jeffries
,
D. I.
Svergun
, and
D.
Franke
,
J. Appl. Crystallogr.
54
,
343
(
2021
).
52.
A.
Panjkovich
and
D. I.
Svergun
,
Bioinformatics
34
,
1944
(
2018
).
53.
P. V.
Konarev
,
V. V.
Volkov
,
A. V.
Sokolova
,
M. H. J.
Koch
, and
D. I.
Svergun
,
J. Appl. Crystallogr.
36
,
1277
(
2003
).
54.
D. I.
Svergun
,
J. Appl. Crystallogr.
25
,
495
(
1992
).
55.
A.
Guinier
,
X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies
(
Courier Corporation
,
1994
).
56.
R. P.
Rambo
and
J. A.
Tainer
,
Nature
496
,
477
(
2013
).
57.
D.
Franke
,
C. M.
Jeffries
, and
D. I.
Svergun
,
Nat. Methods
12
,
419
(
2015
).
58.
59.
M. F.
Schilling
,
Coll. Math. J.
21
,
196
(
1990
).
60.
V. V.
Volkov
and
D. I.
Svergun
,
J. Appl. Crystallogr.
36
,
860
(
2003
).
61.
S.
Kirkpatrick
,
C. D.
Gelatt
, Jr.
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
62.
D.
Svergun
,
C.
Barberato
, and
M. H. J.
Koch
,
J. Appl. Crystallogr.
28
,
768
(
1995
).
63.
S. A.
Kretchmar
and
K. N.
Raymond
,
Inorg. Chem.
27
,
1436
(
1988
).
64.
D.
Schneidman-Duhovny
,
M.
Hammel
,
J. A.
Tainer
, and
A.
Sali
,
Nucleic Acids Res.
44
,
W424
(
2016
).
65.
A.
Sicorello
,
B.
Różycki
,
P. V.
Konarev
,
D. I.
Svergun
, and
A.
Pastore
,
Structure
29
,
70
(
2021
).
66.
C.
Atilgan
,
Z. N.
Gerek
,
S. B.
Ozkan
, and
A. R.
Atilgan
,
Biophys. J.
99
,
933
(
2010
).
67.
A.
Panjkovich
and
D. I.
Svergun
,
Phys. Chem. Chem. Phys.
18
,
5707
(
2016
).
68.
S. A.
Bursakov
,
C.
Carneiro
,
M. J.
Almendra
,
R. O.
Duarte
,
J.
Caldeira
,
I.
Moura
, and
J. J. G.
Moura
,
Biochem. Biophys. Res. Commun.
239
,
816
(
1997
).
69.
C.
Rauer
,
N.
Sen
,
V. P.
Waman
,
M.
Abbasian
, and
C. A.
Orengo
,
Curr. Opin. Struct. Biol.
70
,
108
(
2021
).
70.
G.
Bulbul
,
G.
Liu
,
N. R.
Vithalapur
,
C.
Atilgan
,
Z.
Sayers
, and
N.
Pourmand
,
ACS Chem. Neurosci.
10
,
1970
(
2019
).
71.
Y.
Nasu
,
Y.
Shen
,
L.
Kramer
, and
R. E.
Campbell
,
Nat. Chem. Biol.
17
,
509
(
2021
).

Supplementary Material

You do not currently have access to this content.