An empirical multi-parameter equation of state in terms of the reduced Helmholtz energy is presented for the Mie (λr-6) fluid with a repulsive exponent λr from 11 to 13. The equation is fitted to an extensive dataset from molecular dynamics simulation as well as the second and third thermal virial coefficients. It is comprehensively compared with the SAFT-VR model and is a more accurate description of the considered fluid class. The equation is valid for reduced temperatures T/Tc from 0.55 to 4.5 and for reduced pressures of up to p/pc = 265. A good extrapolation behavior and the occurrence of a single Maxwell loop down to the vicinity of the triple point temperature are realized.

1.
J. E.
Jones
, “
On the determination of molecular fields.-I. From the variation of the viscosity of a gas with temperature
,”
Proc. R. Soc. London, Ser. A
106
,
441
462
(
1924
).
2.
G.
Mie
, “
Zur kinetischen theorie der einatomigen Körper
,”
Ann. Phys.
316
,
657
697
(
1903
).
3.
J.
Fischer
and
M.
Wendland
,
Zur Historie von einfachen zwischenmolekularen Potentialen
(
Thermodynamik Kolloquium
,
Chemnitz
,
2022
).
4.
R.
Fowler
and
E. A.
Guggenheim
,
Statistical Thermodynamics
(
University Press
,
Cambridge
,
1939
).
5.
R.
Eisenschitz
and
F.
London
, “
Über das Verhältnis der van der Waalsschen Kräfte zu den homopolaren Bindungskräften
,”
Z. Phys.
60
,
491
527
(
1930
).
6.
M.
Thol
,
G.
Rutkai
,
A.
Köster
,
R.
Lustig
,
R.
Span
, and
J.
Vrabec
, “
Equation of state for the Lennard-Jones fluid
,”
J. Phys. Chem. Ref. Data
45
,
023101
(
2016
).
7.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
, “
Accurate statistical associating fluid theory for chain molecules formed from Mie segments
,”
J. Chem. Phys.
139
,
154504
(
2013
).
8.
R. J.
Sadus
, “
Intermolecular potential-based equations of state from molecular simulation and second virial coefficient properties
,”
J. Chem. Phys. Chem. B
122
,
7757
7763
(
2018
).
9.
S.
Stephan
and
U. K.
Deiters
, “
Characteristic curves of the Lennard-Jones fluid
,”
Int. J. Thermophys.
41
,
147
(
2020
).
10.
G.
Rutkai
,
M.
Thol
,
R.
Span
, and
J.
Vrabec
, “
How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?
,”
Mol. Phys.
115
,
1104
1121
(
2017
).
11.
Å.
Ervik
,
A.
Mejía
, and
E. A.
Müller
, “
Bottled SAFT: A web app providing SAFT-gamma Mie force field parameters for thousands of molecular fluids
,”
J. Chem. Inf. Model.
56
,
1609
1614
(
2016
).
12.
E. A.
Müller
and
G.
Jackson
, “
Force-field parameters from the SAFT-gamma equation of state for use in coarse-grained molecular simulations
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
405
427
(
2014
).
13.
E. W.
Lemmon
and
R. T.
Jacobsen
, “
A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HCF-125)
,”
J. Phys. Chem. Ref. Data
34
,
69
108
(
2005
).
14.
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants
,”
Rev. Mod. Phys.
93
,
025010
(
2021
).
15.
R.
Span
,
Multi-Parameter Equations of State: An Accurate Source of Thermodynamic Property Data
(
Springer
,
Berlin, Heidelberg
,
2000
).
16.
R. J.
Sadus
, “
Second virial coefficient properties of the n-m Lennard-Jones/Mie potential
,”
J. Chem. Phys.
149
,
074504
(
2018
).
17.
R. J.
Sadus
, “
Erratum: “Second virial coefficient properties of the n-m Lennard-Jones/Mie potential” J. Chem. Phys. 149, 074504 (2018)
,”
J. Chem. Phys.
150
,
079902
(
2019
).
18.
S.
Deublein
,
B.
Eckl
,
J.
Stoll
,
S. V.
Lishchuk
,
G.
Guevara-Carrion
,
C. W.
Glass
,
T.
Merker
,
M.
Bernreuther
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties
,”
Comput. Phys. Commun.
182
,
2350
2367
(
2011
).
19.
C. W.
Glass
,
S.
Reiser
,
G.
Rutkai
,
S.
Deublein
,
A.
Köster
,
G.
Guevara-Carrion
,
A.
Wafai
,
M.
Horsch
,
M.
Bernreuther
,
T.
Windmann
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties, new version release
,”
Comput. Phys. Commun.
185
,
3302
3306
(
2014
).
20.
G.
Rutkai
,
A.
Köster
,
G.
Guevara-Carrion
,
T.
Janzen
,
M.
Schappals
,
C. W.
Glass
,
M.
Bernreuther
,
A.
Wafai
,
S.
Stephan
,
M.
Kohns
,
S.
Reiser
,
S.
Deublein
,
M.
Horsch
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties, release 3.0
,”
Comput. Phys. Commun.
221
,
343
351
(
2017
).
21.
R.
Fingerhut
,
G.
Guevara-Carrion
,
I.
Nitzke
,
D.
Saric
,
J.
Marx
,
K.
Langenbach
,
S.
Prokopev
,
D.
Celný
,
M.
Bernreuther
,
S.
Stephan
,
M.
Kohns
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties, release 4.0
,”
Comput. Phys. Commun.
262
,
107860
(
2021
).
22.
R.
Lustig
, “
Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule–Thomson coefficient
,”
Mol. Sim.
37
,
457
465
(
2011
).
23.
R.
Lustig
, “
Statistical analogues for fundamental equation of state derivatives
,”
Mol. Phys.
110
,
3041
3052
(
2012
).
24.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
25.
D. J.
Allen
and
M. P.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1989
).
26.
A.
Ahmed
and
R. J.
Sadus
, “
Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids
,”
J. Chem. Phys.
131
,
174504
(
2009
).
27.
J.
Vrabec
and
H.
Hasse
, “
Grand equilibrium: Vapour-liquid equilibria by a new molecular simulation method
,”
Mol. Phys.
100
,
3375
3383
(
2002
).
28.
E. W.
Lemmon
,
M. O.
McLinden
, and
W.
Wagner
, “
Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa
,”
J. Chem. Eng. Data
54
,
3141
3180
(
2009
).
29.
MATLAB
, MATLAB Optimization Toolbox - R2020a,
2020
.
30.
R.
Span
,
R.
Beckmüller
,
S.
Hielscher
,
A.
Jäger
,
E.
Mickoleit
,
T.
Neumann
, and
S.
Pohl
, “
TREND. Thermodynamic reference and engineering data 5.0
,” Chair of thermodynamics, Ruhr University Bochum.
31.
S.
Werth
,
K.
Stöbener
,
M.
Horsch
, and
H.
Hasse
, “
Simultaneous description of bulk and interfacial properties of fluids by the Mie potential
,”
Mol. Phys.
115
,
1017
1030
(
2017
).
32.
N. S.
Ramrattan
,
C.
Avendaño
,
E. A.
Müller
, and
A.
Galindo
, “
A corresponding-states framework for the description of the Mie family of intermolecular potentials
,”
Mol. Phys.
113
,
932
947
(
2015
).
33.
J. J.
Potoff
and
D. A.
Bernard-Brunel
, “
Mie potentials for phase equilibria calculations: Application to alkanes and perfluoroalkanes
,”
J. Chem. Phys. Chem. B
113
,
14725
14731
(
2009
).
34.
M. G.
Noro
and
D.
Frenkel
, “
Extended corresponding-states behavior for particles with variable range attractions
,”
J. Chem. Phys.
113
,
2941
2944
(
2000
).
35.
H.
Okumura
and
F.
Yonezawa
, “
Liquid–vapor coexistence curves of several interatomic model potentials
,”
J. Chem. Phys.
113
,
9162
9168
(
2000
).
36.
P.
Orea
,
Y.
Reyes-Mercado
, and
Y.
Duda
, “
Some universal trends of the Mie (n,m) fluid thermodynamics
,”
Phys. Lett. A
372
,
7024
7027
(
2008
).
37.
A.
Lotfi
,
J.
Vrabec
, and
J.
Fischer
, “
Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method
,”
Mol. Phys.
76
,
1319
1333
(
1992
).
38.
H.
Hoang
,
S.
Delage-Santacreu
, and
G.
Galliero
, “
Simultaneous description of equilibrium, interfacial, and transport properties of fluids using a Mie chain coarse-grained force field
,”
Ind. Eng. Chem. Res.
56
,
9213
9226
(
2017
).
39.
R. J.
Sadus
, “
Combining intermolecular potentials for the prediction of fluid properties: Two-body and three-body interactions
,”
J. Chem. Phys.
153
,
214509
(
2020
).
40.
J.-P.
Hansen
and
L.
Verlet
, “
Phase transitions of the Lennard-Jones system
,”
Phys. Rev.
184
,
151
161
(
1969
).
41.
A. Z.
Panagiotopoulos
, “
Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble
,”
Mol. Phys.
61
,
813
826
(
1987
).
42.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
, “
Phase equilibria by simulation in the Gibbs ensemble
,”
Mol. Phys.
63
,
527
545
(
1988
).
43.
B.
Smit
and
D.
Frenkel
, “
Calculation of the chemical potential in the Gibbs ensemble
,”
Mol. Phys.
68
,
951
958
(
1989
).
44.
D. A.
Kofke
, “
Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line
,”
J. Chem. Phys.
98
,
4149
4162
(
1993
).
45.
D. J.
Adams
, “
Calculating the low temperature vapour line by Monte Carlo
,”
Mol. Phys.
32
,
647
657
(
1976
).
46.
R.
Agrawal
and
D. A.
Kofke
, “
Thermodynamic and structural properties of model systems at solid-fluid coexistence
,”
Mol. Phys.
85
,
43
59
(
1995
).
47.
D. J.
Adams
, “
Calculating the high-temperature vapour line by Monte Carlo
,”
Mol. Phys.
37
,
211
221
(
1979
).
48.
M. G.
Martin
and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
,”
J. Chem. Phys. Chem. B
102
,
2569
2577
(
1998
).
49.
V. G.
Baidakov
,
G. G.
Chernykh
, and
S. P.
Protsenko
, “
Effect of the cut-off radius of the intermolecular potential on phase equilibrium and surface tension in Lennard–Jones systems
,”
Chem. Phys. Lett.
321
,
315
320
(
2000
).
50.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
, “
The Lennard-Jones equation of state revisited
,”
Mol. Phys.
78
,
591
618
(
1993
).
51.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
, “
Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture
,”
J. Chem. Phys.
109
,
10914
10920
(
1998
).
52.
M.
Mecke
,
J.
Winkelmann
, and
J.
Fischer
, “
Molecular dynamics simulation of the liquid–vapor interface: The Lennard-Jones fluid
,”
J. Chem. Phys.
107
,
9264
9270
(
1997
).
53.
J. E.
Hunter
and
W. P.
Reinhardt
, “
Finite–size scaling behavior of the free energy barrier between coexisting phases: Determination of the critical temperature and interfacial tension of the Lennard–Jones fluid
,”
J. Chem. Phys.
103
,
8627
8637
(
1995
).
54.
E. H.
Brown
, “
On the thermodynamic properties of fluids
,”
Bull. Inst. Int. Froid, Annexe
1960
,
169
178
.
55.
U. K.
Deiters
and
A.
Neumaier
, “
Computer simulation of the characteristic curves of pure fluids
,”
J. Chem. Eng. Data
61
,
2720
2728
(
2016
).
56.
C. M.
Colina
and
E. A.
Müller
, “
Molecular simulation of Joule–Thomson inversion curves
,”
Int. J. Thermophys.
20
,
229
235
(
1999
).
57.
D. M.
Heyes
and
C. T.
Llaguno
, “
Computer simulation and equation of state study of the Boyle and inversion temperature of simple fluids
,”
Chem. Phys.
168
,
61
68
(
1992
).
58.
L. I.
Kioupis
,
G.
Arya
, and
E. J.
Maginn
, “
Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: Applications
,”
Fluid Phase Equilib.
200
,
93
110
(
2002
).
59.
J.
Vrabec
,
G. K.
Kedia
, and
H.
Hasse
, “
Prediction of Joule–Thomson inversion curves for pure fluids and one mixture by molecular simulation
,”
Cryogenics
45
,
253
258
(
2005
).
60.
S.
Stephan
and
M.
Urschel
, “
Characteristic curves of the Mie fluid
,” (unpublished) (
2022
).
61.
M.
Urschel
and
S.
Stephan
, “
Determination of Brown’s characteristic curves using molecular simulation
,”
J. Chem. Theory Comput.
(
2023
).
62.
H. E.
Stanley
,
Introduction to Phase Transitions and Critical Phenomena
, International Series of Monographs on Physics (
Oxford University Press
,
New York
,
1971
).
63.
V. V.
Brazhkin
,
Y. D.
Fomin
,
A. G.
Lyapin
,
V. N.
Ryzhov
, and
E. N.
Tsiok
, “
Widom line for the liquid-gas transition in Lennard-Jones system
,”
J. Chem. Phys. Chem. B
115
,
14112
14115
(
2011
).
64.
J.
Losey
and
R. J.
Sadus
, “
The widom line and the Lennard-Jones potential
,”
J. Chem. Phys. Chem. B
123
,
8268
8273
(
2019
).
65.
J. J.
Nicolas
,
K. E.
Gubbins
,
W. B.
Streett
, and
D. J.
Tildesley
, “
Equation of state for the Lennard-Jones fluid
,”
Mol. Phys.
37
,
1429
1454
(
1979
).
66.
Ø.
Wilhelmsen
,
A.
Aasen
,
G.
Skaugen
,
P.
Aursand
,
A.
Austegard
,
E.
Aursand
,
M. A.
Gjennestad
,
H.
Lund
,
G.
Linga
, and
M.
Hammer
, “
Thermodynamic modeling with equations of state: Present challenges with established methods
,”
Ind. Eng. Chem. Res.
56
,
3503
3515
(
2017
).
67.
V. G.
Baidakov
,
S. P.
Protsenko
, and
Z. R.
Kozlova
, “
Thermal and caloric equations of state for stable and metastable Lennard-Jones fluids: I. Molecular-Dynamics simulations
,”
Fluid Phase Equilib.
263
,
55
63
(
2008
).
68.
M.
Gottschalk
, “
An EOS for the Lennard-Jones fluid: A virial expansion approach
,”
AIP Adv
9
,
125206
(
2019
).
69.
A. E.
Elhassan
,
R. J. B.
Craven
, and
K. M.
de Reuck
, “
The area method for pure fluids and an analysis of the two-phase region
,”
Fluid Phase Equilib.
130
,
167
187
(
1997
).

Supplementary Material

You do not currently have access to this content.