An empirical multi-parameter equation of state in terms of the reduced Helmholtz energy is presented for the Mie (λr-6) fluid with a repulsive exponent λr from 11 to 13. The equation is fitted to an extensive dataset from molecular dynamics simulation as well as the second and third thermal virial coefficients. It is comprehensively compared with the SAFT-VR model and is a more accurate description of the considered fluid class. The equation is valid for reduced temperatures T/Tc from 0.55 to 4.5 and for reduced pressures of up to p/pc = 265. A good extrapolation behavior and the occurrence of a single Maxwell loop down to the vicinity of the triple point temperature are realized.
REFERENCES
1.
J. E.
Jones
, “On the determination of molecular fields.-I. From the variation of the viscosity of a gas with temperature
,” Proc. R. Soc. London, Ser. A
106
, 441
–462
(1924
).2.
G.
Mie
, “Zur kinetischen theorie der einatomigen Körper
,” Ann. Phys.
316
, 657
–697
(1903
).3.
J.
Fischer
and M.
Wendland
, Zur Historie von einfachen zwischenmolekularen Potentialen
(Thermodynamik Kolloquium
, Chemnitz
, 2022
).4.
R.
Fowler
and E. A.
Guggenheim
, Statistical Thermodynamics
(University Press
, Cambridge
, 1939
).5.
R.
Eisenschitz
and F.
London
, “Über das Verhältnis der van der Waalsschen Kräfte zu den homopolaren Bindungskräften
,” Z. Phys.
60
, 491
–527
(1930
).6.
M.
Thol
, G.
Rutkai
, A.
Köster
, R.
Lustig
, R.
Span
, and J.
Vrabec
, “Equation of state for the Lennard-Jones fluid
,” J. Phys. Chem. Ref. Data
45
, 023101
(2016
).7.
T.
Lafitte
, A.
Apostolakou
, C.
Avendaño
, A.
Galindo
, C. S.
Adjiman
, E. A.
Müller
, and G.
Jackson
, “Accurate statistical associating fluid theory for chain molecules formed from Mie segments
,” J. Chem. Phys.
139
, 154504
(2013
).8.
R. J.
Sadus
, “Intermolecular potential-based equations of state from molecular simulation and second virial coefficient properties
,” J. Chem. Phys. Chem. B
122
, 7757
–7763
(2018
).9.
S.
Stephan
and U. K.
Deiters
, “Characteristic curves of the Lennard-Jones fluid
,” Int. J. Thermophys.
41
, 147
(2020
).10.
G.
Rutkai
, M.
Thol
, R.
Span
, and J.
Vrabec
, “How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?
,” Mol. Phys.
115
, 1104
–1121
(2017
).11.
Å.
Ervik
, A.
Mejía
, and E. A.
Müller
, “Bottled SAFT: A web app providing SAFT-gamma Mie force field parameters for thousands of molecular fluids
,” J. Chem. Inf. Model.
56
, 1609
–1614
(2016
).12.
E. A.
Müller
and G.
Jackson
, “Force-field parameters from the SAFT-gamma equation of state for use in coarse-grained molecular simulations
,” Annu. Rev. Chem. Biomol. Eng.
5
, 405
–427
(2014
).13.
E. W.
Lemmon
and R. T.
Jacobsen
, “A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HCF-125)
,” J. Phys. Chem. Ref. Data
34
, 69
–108
(2005
).14.
E.
Tiesinga
, P. J.
Mohr
, D. B.
Newell
, and B. N.
Taylor
, “CODATA recommended values of the fundamental physical constants
,” Rev. Mod. Phys.
93
, 025010
(2021
).15.
R.
Span
, Multi-Parameter Equations of State: An Accurate Source of Thermodynamic Property Data
(Springer
, Berlin, Heidelberg
, 2000
).16.
R. J.
Sadus
, “Second virial coefficient properties of the n-m Lennard-Jones/Mie potential
,” J. Chem. Phys.
149
, 074504
(2018
).17.
R. J.
Sadus
, “Erratum: “Second virial coefficient properties of the n-m Lennard-Jones/Mie potential” J. Chem. Phys. 149, 074504 (2018)
,” J. Chem. Phys.
150
, 079902
(2019
).18.
S.
Deublein
, B.
Eckl
, J.
Stoll
, S. V.
Lishchuk
, G.
Guevara-Carrion
, C. W.
Glass
, T.
Merker
, M.
Bernreuther
, H.
Hasse
, and J.
Vrabec
, “ms2: A molecular simulation tool for thermodynamic properties
,” Comput. Phys. Commun.
182
, 2350
–2367
(2011
).19.
C. W.
Glass
, S.
Reiser
, G.
Rutkai
, S.
Deublein
, A.
Köster
, G.
Guevara-Carrion
, A.
Wafai
, M.
Horsch
, M.
Bernreuther
, T.
Windmann
, H.
Hasse
, and J.
Vrabec
, “ms2: A molecular simulation tool for thermodynamic properties, new version release
,” Comput. Phys. Commun.
185
, 3302
–3306
(2014
).20.
G.
Rutkai
, A.
Köster
, G.
Guevara-Carrion
, T.
Janzen
, M.
Schappals
, C. W.
Glass
, M.
Bernreuther
, A.
Wafai
, S.
Stephan
, M.
Kohns
, S.
Reiser
, S.
Deublein
, M.
Horsch
, H.
Hasse
, and J.
Vrabec
, “ms2: A molecular simulation tool for thermodynamic properties, release 3.0
,” Comput. Phys. Commun.
221
, 343
–351
(2017
).21.
R.
Fingerhut
, G.
Guevara-Carrion
, I.
Nitzke
, D.
Saric
, J.
Marx
, K.
Langenbach
, S.
Prokopev
, D.
Celný
, M.
Bernreuther
, S.
Stephan
, M.
Kohns
, H.
Hasse
, and J.
Vrabec
, “ms2: A molecular simulation tool for thermodynamic properties, release 4.0
,” Comput. Phys. Commun.
262
, 107860
(2021
).22.
R.
Lustig
, “Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule–Thomson coefficient
,” Mol. Sim.
37
, 457
–465
(2011
).23.
R.
Lustig
, “Statistical analogues for fundamental equation of state derivatives
,” Mol. Phys.
110
, 3041
–3052
(2012
).24.
B.
Widom
, “Some topics in the theory of fluids
,” J. Chem. Phys.
39
, 2808
–2812
(1963
).25.
D. J.
Allen
and M. P.
Tildesley
, Computer Simulation of Liquids
(Oxford University Press
, 1989
).26.
A.
Ahmed
and R. J.
Sadus
, “Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids
,” J. Chem. Phys.
131
, 174504
(2009
).27.
J.
Vrabec
and H.
Hasse
, “Grand equilibrium: Vapour-liquid equilibria by a new molecular simulation method
,” Mol. Phys.
100
, 3375
–3383
(2002
).28.
E. W.
Lemmon
, M. O.
McLinden
, and W.
Wagner
, “Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa
,” J. Chem. Eng. Data
54
, 3141
–3180
(2009
).29.
MATLAB
, MATLAB Optimization Toolbox - R2020a, 2020
.30.
R.
Span
, R.
Beckmüller
, S.
Hielscher
, A.
Jäger
, E.
Mickoleit
, T.
Neumann
, and S.
Pohl
, “TREND. Thermodynamic reference and engineering data 5.0
,” Chair of thermodynamics, Ruhr University Bochum.31.
S.
Werth
, K.
Stöbener
, M.
Horsch
, and H.
Hasse
, “Simultaneous description of bulk and interfacial properties of fluids by the Mie potential
,” Mol. Phys.
115
, 1017
–1030
(2017
).32.
N. S.
Ramrattan
, C.
Avendaño
, E. A.
Müller
, and A.
Galindo
, “A corresponding-states framework for the description of the Mie family of intermolecular potentials
,” Mol. Phys.
113
, 932
–947
(2015
).33.
J. J.
Potoff
and D. A.
Bernard-Brunel
, “Mie potentials for phase equilibria calculations: Application to alkanes and perfluoroalkanes
,” J. Chem. Phys. Chem. B
113
, 14725
–14731
(2009
).34.
M. G.
Noro
and D.
Frenkel
, “Extended corresponding-states behavior for particles with variable range attractions
,” J. Chem. Phys.
113
, 2941
–2944
(2000
).35.
H.
Okumura
and F.
Yonezawa
, “Liquid–vapor coexistence curves of several interatomic model potentials
,” J. Chem. Phys.
113
, 9162
–9168
(2000
).36.
P.
Orea
, Y.
Reyes-Mercado
, and Y.
Duda
, “Some universal trends of the Mie (n,m) fluid thermodynamics
,” Phys. Lett. A
372
, 7024
–7027
(2008
).37.
A.
Lotfi
, J.
Vrabec
, and J.
Fischer
, “Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method
,” Mol. Phys.
76
, 1319
–1333
(1992
).38.
H.
Hoang
, S.
Delage-Santacreu
, and G.
Galliero
, “Simultaneous description of equilibrium, interfacial, and transport properties of fluids using a Mie chain coarse-grained force field
,” Ind. Eng. Chem. Res.
56
, 9213
–9226
(2017
).39.
R. J.
Sadus
, “Combining intermolecular potentials for the prediction of fluid properties: Two-body and three-body interactions
,” J. Chem. Phys.
153
, 214509
(2020
).40.
J.-P.
Hansen
and L.
Verlet
, “Phase transitions of the Lennard-Jones system
,” Phys. Rev.
184
, 151
–161
(1969
).41.
A. Z.
Panagiotopoulos
, “Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble
,” Mol. Phys.
61
, 813
–826
(1987
).42.
A. Z.
Panagiotopoulos
, N.
Quirke
, M.
Stapleton
, and D. J.
Tildesley
, “Phase equilibria by simulation in the Gibbs ensemble
,” Mol. Phys.
63
, 527
–545
(1988
).43.
B.
Smit
and D.
Frenkel
, “Calculation of the chemical potential in the Gibbs ensemble
,” Mol. Phys.
68
, 951
–958
(1989
).44.
D. A.
Kofke
, “Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line
,” J. Chem. Phys.
98
, 4149
–4162
(1993
).45.
D. J.
Adams
, “Calculating the low temperature vapour line by Monte Carlo
,” Mol. Phys.
32
, 647
–657
(1976
).46.
R.
Agrawal
and D. A.
Kofke
, “Thermodynamic and structural properties of model systems at solid-fluid coexistence
,” Mol. Phys.
85
, 43
–59
(1995
).47.
D. J.
Adams
, “Calculating the high-temperature vapour line by Monte Carlo
,” Mol. Phys.
37
, 211
–221
(1979
).48.
M. G.
Martin
and J. I.
Siepmann
, “Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
,” J. Chem. Phys. Chem. B
102
, 2569
–2577
(1998
).49.
V. G.
Baidakov
, G. G.
Chernykh
, and S. P.
Protsenko
, “Effect of the cut-off radius of the intermolecular potential on phase equilibrium and surface tension in Lennard–Jones systems
,” Chem. Phys. Lett.
321
, 315
–320
(2000
).50.
J. K.
Johnson
, J. A.
Zollweg
, and K. E.
Gubbins
, “The Lennard-Jones equation of state revisited
,” Mol. Phys.
78
, 591
–618
(1993
).51.
J. J.
Potoff
and A. Z.
Panagiotopoulos
, “Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture
,” J. Chem. Phys.
109
, 10914
–10920
(1998
).52.
M.
Mecke
, J.
Winkelmann
, and J.
Fischer
, “Molecular dynamics simulation of the liquid–vapor interface: The Lennard-Jones fluid
,” J. Chem. Phys.
107
, 9264
–9270
(1997
).53.
J. E.
Hunter
and W. P.
Reinhardt
, “Finite–size scaling behavior of the free energy barrier between coexisting phases: Determination of the critical temperature and interfacial tension of the Lennard–Jones fluid
,” J. Chem. Phys.
103
, 8627
–8637
(1995
).54.
E. H.
Brown
, “On the thermodynamic properties of fluids
,” Bull. Inst. Int. Froid, Annexe
1960
, 169
–178
.55.
U. K.
Deiters
and A.
Neumaier
, “Computer simulation of the characteristic curves of pure fluids
,” J. Chem. Eng. Data
61
, 2720
–2728
(2016
).56.
C. M.
Colina
and E. A.
Müller
, “Molecular simulation of Joule–Thomson inversion curves
,” Int. J. Thermophys.
20
, 229
–235
(1999
).57.
D. M.
Heyes
and C. T.
Llaguno
, “Computer simulation and equation of state study of the Boyle and inversion temperature of simple fluids
,” Chem. Phys.
168
, 61
–68
(1992
).58.
L. I.
Kioupis
, G.
Arya
, and E. J.
Maginn
, “Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: Applications
,” Fluid Phase Equilib.
200
, 93
–110
(2002
).59.
J.
Vrabec
, G. K.
Kedia
, and H.
Hasse
, “Prediction of Joule–Thomson inversion curves for pure fluids and one mixture by molecular simulation
,” Cryogenics
45
, 253
–258
(2005
).60.
S.
Stephan
and M.
Urschel
, “Characteristic curves of the Mie fluid
,” (unpublished) (2022
).61.
M.
Urschel
and S.
Stephan
, “Determination of Brown’s characteristic curves using molecular simulation
,” J. Chem. Theory Comput.
(2023
).62.
H. E.
Stanley
, Introduction to Phase Transitions and Critical Phenomena
, International Series of Monographs on Physics (Oxford University Press
, New York
, 1971
).63.
V. V.
Brazhkin
, Y. D.
Fomin
, A. G.
Lyapin
, V. N.
Ryzhov
, and E. N.
Tsiok
, “Widom line for the liquid-gas transition in Lennard-Jones system
,” J. Chem. Phys. Chem. B
115
, 14112
–14115
(2011
).64.
J.
Losey
and R. J.
Sadus
, “The widom line and the Lennard-Jones potential
,” J. Chem. Phys. Chem. B
123
, 8268
–8273
(2019
).65.
J. J.
Nicolas
, K. E.
Gubbins
, W. B.
Streett
, and D. J.
Tildesley
, “Equation of state for the Lennard-Jones fluid
,” Mol. Phys.
37
, 1429
–1454
(1979
).66.
Ø.
Wilhelmsen
, A.
Aasen
, G.
Skaugen
, P.
Aursand
, A.
Austegard
, E.
Aursand
, M. A.
Gjennestad
, H.
Lund
, G.
Linga
, and M.
Hammer
, “Thermodynamic modeling with equations of state: Present challenges with established methods
,” Ind. Eng. Chem. Res.
56
, 3503
–3515
(2017
).67.
V. G.
Baidakov
, S. P.
Protsenko
, and Z. R.
Kozlova
, “Thermal and caloric equations of state for stable and metastable Lennard-Jones fluids: I. Molecular-Dynamics simulations
,” Fluid Phase Equilib.
263
, 55
–63
(2008
).68.
M.
Gottschalk
, “An EOS for the Lennard-Jones fluid: A virial expansion approach
,” AIP Adv
9
, 125206
(2019
).69.
A. E.
Elhassan
, R. J. B.
Craven
, and K. M.
de Reuck
, “The area method for pure fluids and an analysis of the two-phase region
,” Fluid Phase Equilib.
130
, 167
–187
(1997
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.