Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap. These coherent artifacts have also been described in 2DES but remain less well-understood due to the complexity of 2DES and the relative novelty of the method. Here, we present 2DES results in two model nanocrystal samples, CdSe and CsPbI3. We demonstrate non-resonant signals due to solvent response during the pulse overlap and resonant signals, which we assign to perturbed free induction decay (PFID), both before and during the pulse overlap. The simulations of the 2DES response functions at early and negative time delays reinforce the assignment of the negative time delay signals to PFID. Modeling reveals that the PFID signals will severely distort the initial picture of the resonant population dynamics. By including these effects in models of 2DES spectra, one is able to push forward the extraction of early time dynamics in 2DES.

1.
M.
Maiuri
,
M.
Garavelli
, and
G.
Cerullo
, “
Ultrafast spectroscopy: State of the art and open challenges
,”
J. Am. Chem. Soc.
142
,
3
15
(
2020
).
2.
E.
Collini
, “
2D electronic spectroscopic techniques for quantum technology applications
,”
J. Phys. Chem. C
125
,
13096
13108
(
2021
).
3.
A.
Gelzinis
,
R.
Augulis
,
V.
Butkus
,
B.
Robert
, and
L.
Valkunas
, “
Two-dimensional spectroscopy for non-specialists
,”
Biochim. Biophys. Acta, Bioenerg.
1860
,
271
285
(
2019
).
4.
S.
Biswas
,
J.
Kim
,
X.
Zhang
, and
G. D.
Scholes
, “
Coherent two-dimensional and broadband electronic spectroscopies
,”
Chem. Rev.
122
,
4257
4321
(
2022
).
5.
C. L.
Smallwood
and
S. T.
Cundiff
, “
Multidimensional coherent spectroscopy of semiconductors
,”
Laser Photonics Rev.
12
,
1870052
(
2018
).
6.
A.
Liu
,
D. B.
Almeida
,
L. A.
Padilha
, and
S. T.
Cundiff
, “
Perspective: Multi-dimensional coherent spectroscopy of perovskite nanocrystals
,”
J. Phys.: Mater.
5
,
021002
(
2022
).
7.
P. J.
Nowakowski
,
M. F.
Khyasudeen
, and
H.-S.
Tan
, “
The effect of laser pulse bandwidth on the measurement of the frequency fluctuation correlation functions in 2D electronic spectroscopy
,”
Chem. Phys.
515
,
214
220
(
2018
).
8.
H.
Seiler
,
S.
Palato
,
C.
Sonnichsen
,
H.
Baker
,
E.
Socie
,
D. P.
Strandell
, and
P.
Kambhampati
, “
Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI3 perovskite nanocrystals
,”
Nat. Commun.
10
,
4962
(
2019
).
9.
T. A.
Gellen
,
J.
Lem
, and
D. B.
Turner
, “
Probing homogeneous line broadening in CdSe nanocrystals using multidimensional electronic spectroscopy
,”
Nano Lett.
17
,
2809
2815
(
2017
).
10.
S.
Palato
,
H.
Seiler
,
P.
Nijjar
,
O.
Prezhdo
, and
P.
Kambhampati
, “
Atomic fluctuations in electronic materials revealed by dephasing
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
11940
(
2020
).
11.
F. V. A.
Camargo
,
H. L.
Anderson
,
S. R.
Meech
, and
I. A.
Heisler
, “
Full characterization of vibrational coherence in a porphyrin chromophore by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. A
119
,
95
101
(
2015
).
12.
R. A.
Engh
,
J. W.
Petrich
, and
G. R.
Fleming
, “
Removal of coherent coupling artifact in ground-state recovery experiments: Malachite green in water-methanol mixtures
,”
J. Phys. Chem.
89
,
618
621
(
1985
).
13.
M. W.
Balk
and
G. R.
Fleming
, “
Dependence of the coherence spike on the material dephasing time in pump-probe experiments
,”
J. Chem. Phys.
83
,
4300
4307
(
1985
).
14.
H. A.
Ferwerda
,
J.
Terpstra
, and
D. A.
Wiersma
, “
Discussion of a ‘coherent artifact’ in four-wave mixing experiments
,”
J. Chem. Phys.
91
,
3296
3305
(
1989
).
15.
M. V.
Lebedev
,
O. V.
Misochko
,
T.
Dekorsy
, and
N.
Georgiev
, “
On the nature of ‘coherent artifact,’
J. Exp. Theor. Phys.
100
,
272
282
(
2005
).
16.
B.
Dietzek
,
T.
Pascher
,
V.
Sundström
, and
A.
Yartsev
, “
Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design
,”
Laser Phys. Lett.
4
,
38
43
(
2007
).
17.
A.
Bresci
,
M.
Guizzardi
,
C. M.
Valensise
,
F.
Marangi
,
F.
Scotognella
,
G.
Cerullo
, and
D.
Polli
, “
Removal of cross-phase modulation artifacts in ultrafast pump-probe dynamics by deep learning
,”
APL Photonics
6
,
076104
(
2021
).
18.
K.
Ekvall
,
P.
Van Der Meulen
,
C.
Dhollande
,
L.-E.
Berg
,
S.
Pommeret
,
R.
Naskrecki
, and
J.-C.
Mialocq
, “
Cross phase modulation artifact in liquid phase transient absorption spectroscopy
,”
J. Appl. Phys.
87
,
2340
2352
(
2000
).
19.
S. A.
Kovalenko
,
A. L.
Dobryakov
,
J.
Ruthmann
, and
N. P.
Ernsting
, “
Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing
,”
Phys. Rev. A
59
,
2369
2384
(
1999
).
20.
T. F.
Heinz
,
K. B.
Eisenthal
, and
S. L.
Palfrey
, “
Coherent coupling effects in pump–probe measurements with collinear, copropagating beams
,”
Opt. Lett.
9
,
359
(
1984
).
21.
D. S.
Chemla
and
J.
Shah
, “
Many-body and correlation effects in semiconductors
,”
Nature
411
,
549
557
(
2001
).
22.
K.
Leo
,
E. O.
Göbel
,
T. C.
Damen
,
J.
Shah
,
S.
Schmitt-Rink
,
W.
Schäfer
,
J. F.
Müller
,
K.
Köhler
, and
P.
Ganser
, “
Subpicosecond four-wave mixing in GaAs/AlxGa1−xAs quantum wells
,”
Phys. Rev. B
44
,
5726
5737
(
1991
).
23.
K.
Leo
,
M.
Wegener
,
J.
Shah
,
D. S.
Chemla
,
E. O.
Göbel
,
T. C.
Damen
,
S.
Schmitt-Rink
, and
W.
Schäfer
, “
Effects of coherent polarization interactions on time-resolved degenerate four-wave mixing
,”
Phys. Rev. Lett.
65
,
1340
1343
(
1990
).
24.
M.
Wegener
,
D. S.
Chemla
,
S.
Schmitt-Rink
, and
W.
Schäfer
, “
Line shape of time-resolved four-wave mixing
,”
Phys. Rev. A
42
,
5675
5684
(
1990
).
25.
A. J.
Fischer
,
D. S.
Kim
,
J.
Hays
,
W.
Shan
,
J. J.
Song
,
D. B.
Eason
,
J.
Ren
,
J. F.
Schetzina
,
H.
Luo
,
J. K.
Furdyna
,
Z. Q.
Zhu
,
T.
Yao
,
J. F.
Klem
, and
W.
Schäfer
, “
Femtosecond coherent spectroscopy of bulk ZnSe and ZnCdSe/ZnSe quantum wells
,”
Phys. Rev. Lett.
73
,
2368
2371
(
1994
).
26.
P.
Hamm
, “
Coherent effects in femtosecond infrared spectroscopy
,”
Chem. Phys.
200
,
415
429
(
1995
).
27.
P.
Nuernberger
,
K. F.
Lee
,
A.
Bonvalet
,
T.
Polack
,
M. H.
Vos
,
A.
Alexandrou
, and
M.
Joffre
, “
Suppression of perturbed free-induction decay and noise in experimental ultrafast pump–probe data
,”
Opt. Lett.
34
,
3226
3228
(
2009
).
28.
S.
Yan
,
M. T.
Seidel
, and
H.-S.
Tan
, “
Perturbed free induction decay in ultrafast mid-IR pump–probe spectroscopy
,”
Chem. Phys. Lett.
517
,
36
40
(
2011
).
29.
C.
Wolpert
,
C.
Dicken
,
L.
Wang
,
P.
Atkinson
,
A.
Rastelli
,
O. G.
Schmidt
,
H.
Giessen
, and
M.
Lippitz
, “
Ultrafast coherent spectroscopy of a single self-assembled quantum dot
,”
Phys. Status Solidi B
249
,
721
730
(
2012
).
30.
R.
Mondal
,
B.
Roy
,
B.
Pal
, and
B.
Bansal
, “
How pump–probe differential reflectivity at negative delay yields the perturbed-free-induction-decay: Theory of the experiment and its verification
,”
J. Phys: Condens. Matter
30
,
505902
(
2018
).
31.
M. H.
Vos
,
J.
Breton
, and
J.-L.
Martin
, “
Electronic energy transfer within the hexamer cofactor system of bacterial reaction centers
,”
J. Phys. Chem. B
101
,
9820
9832
(
1997
).
32.
M.
Joffre
,
C. B.
à la Guillaume
,
N.
Peyghambarian
,
M.
Lindberg
,
D.
Hulin
,
A.
Migus
,
S. W.
Koch
, and
A.
Antonetti
, “
Coherent effects in pump–probe spectroscopy of excitons
,”
Opt. Lett.
13
,
276
(
1988
).
33.
J. M.
Richter
,
F.
Branchi
,
F.
Valduga De Almeida Camargo
,
B.
Zhao
,
R. H.
Friend
,
G.
Cerullo
, and
F.
Deschler
, “
Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy
,”
Nat. Commun.
8
,
376
(
2017
).
34.
X. T.
Nguyen
,
D.
Timmer
,
Y.
Rakita
,
D.
Cahen
,
A.
Steinhoff
,
F.
Jahnke
,
C.
Lienau
, and
A.
De Sio
, “
Ultrafast charge carrier relaxation in inorganic halide perovskite single crystals probed by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
10
,
5414
5421
(
2019
).
35.
L. T.
Lloyd
,
R. E.
Wood
,
F.
Mujid
,
S.
Sohoni
,
K. L.
Ji
,
P.-C.
Ting
,
J. S.
Higgins
,
J.
Park
, and
G. S.
Engel
, “
Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolved two-dimensional electronic spectroscopy
,”
ACS Nano
15
,
10253
10263
(
2021
).
36.
P.
Hamm
,
M.
Lim
,
W. F.
DeGrado
, and
R. M.
Hochstrasser
, “
Pump/probe self heterodyned 2D spectroscopy of vibrational transitions of a small globular peptide
,”
J. Chem. Phys.
112
,
1907
1916
(
2000
).
37.
K. M.
Farrell
and
M. T.
Zanni
, “
Phase stable, shot-to-shot measurement of third- and fifth-order two-quantum correlation spectra using a pulse shaper in the pump–probe geometry
,”
J. Chem. Phys.
157
,
014203
(
2022
).
38.
W.
Kuehn
,
K.
Reimann
,
M.
Woerner
,
T.
Elsaesser
, and
R.
Hey
, “
Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells
,”
J. Phys. Chem. B
115
,
5448
5455
(
2011
).
39.
D.
Paleček
,
P.
Edlund
,
E.
Gustavsson
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
151
,
024201
(
2019
).
40.
P. A.
Rose
and
J. J.
Krich
, “
Automatic Feynman diagram generation for nonlinear optical spectroscopies and application to fifth-order spectroscopy with pulse overlaps
,”
J. Chem. Phys.
154
,
034109
(
2021
).
41.
Y.-C.
Cheng
and
G. R.
Fleming
, “
Dynamics of light harvesting in photosynthesis
,”
Annu. Rev. Phys. Chem.
60
,
241
262
(
2009
).
42.
K. L. M.
Lewis
and
J. P.
Ogilvie
, “
Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
3
,
503
510
(
2012
).
43.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H. G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J.
Dwayne Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H. S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum biology revisited
,”
Sci. Adv.
6
,
eaaz4888
(
2020
).
44.
K. W.
Stone
,
D. B.
Turner
,
K.
Gundogdu
,
S. T.
Cundiff
, and
K. A.
Nelson
, “
Exciton-exciton correlations revealed by two-quantum, two-dimensional Fourier transform optical spectroscopy
,”
Acc. Chem. Res.
42
,
1452
1461
(
2009
).
45.
D. B.
Turner
,
P.
Wen
,
D. H.
Arias
,
K. A.
Nelson
,
H.
Li
,
G.
Moody
,
M. E.
Siemens
, and
S. T.
Cundiff
, “
Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy
,”
Phys. Rev. B
85
,
201303(R)
(
2012
).
46.
D. B.
Turner
,
Y.
Hassan
, and
G. D.
Scholes
, “
Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy
,”
Nano Lett.
12
,
880
886
(
2012
).
47.
A.
Liu
,
D. B.
Almeida
,
W.-K.
Bae
,
L. A.
Padilha
, and
S. T.
Cundiff
, “
Simultaneous existence of confined and delocalized vibrational modes in colloidal quantum dots
,”
J. Phys. Chem. Lett.
10
,
6144
6150
(
2019
).
48.
H.
Seiler
,
S.
Palato
, and
P.
Kambhampati
, “
Investigating exciton structure and dynamics in colloidal CdSe quantum dots with two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
149
,
074702
(
2018
).
49.
H.
Seiler
,
S.
Palato
,
C.
Sonnichsen
,
H.
Baker
, and
P.
Kambhampati
, “
Seeing multiexcitons through sample inhomogeneity: Band-edge biexciton structure in CdSe nanocrystals revealed by two-dimensional electronic spectroscopy
,”
Nano Lett.
18
,
2999
3006
(
2018
).
50.
P.
Brosseau
,
S.
Palato
,
H.
Seiler
,
H.
Baker
, and
P.
Kambhampati
, “
Fifth-order two-quantum absorptive two-dimensional electronic spectroscopy of CdSe quantum dots
,”
J. Chem. Phys.
153
,
234703
(
2020
).
51.
S.
Palato
,
H.
Seiler
,
H.
Baker
,
C.
Sonnichsen
,
P.
Brosseau
, and
P.
Kambhampati
, “
Investigating the electronic structure of confined multiexcitons with nonlinear spectroscopies
,”
J. Chem. Phys.
152
,
104710
(
2020
).
52.
P.
Kambhampati
, “
Nanoparticles, nanocrystals, and quantum dots: What are the implications of size in colloidal nanoscale materials?
,”
J. Phys. Chem. Lett.
12
,
4769
4779
(
2021
).
53.
B.
Yu
,
L.
Chen
,
Z.
Qu
,
C.
Zhang
,
Z.
Qin
,
X.
Wang
, and
M.
Xiao
, “
Size-dependent hot carrier dynamics in perovskite nanocrystals revealed by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
12
,
238
244
(
2021
).
54.
H.
Seiler
,
S.
Palato
,
B. E.
Schmidt
, and
P.
Kambhampati
, “
Simple fiber-based solution for coherent multidimensional spectroscopy in the visible regime
,”
Opt. Lett.
42
,
643
(
2017
).
55.
Q.
Wang
,
X.
Zheng
,
Y.
Deng
,
J.
Zhao
,
Z.
Chen
, and
J.
Huang
, “
Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films
,”
Joule
1
,
371
382
(
2017
).
56.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
,
3692
3696
(
2015
).
57.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
58.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
2009
).
59.
A.
Rodek
,
T.
Hahn
,
J.
Kasprzak
,
T.
Kazimierczuk
,
K.
Nogajewski
,
K. E.
Połczyńska
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Kuhn
,
P.
Machnikowski
,
M.
Potemski
,
D.
Wigger
, and
P.
Kossacki
, “
Local field effects in ultrafast light-matter interaction measured by pump-probe spectroscopy of monolayer MoSe2
,”
Nanophotonics
10
,
2717
2728
(
2021
).
60.
J.
Dana
,
O. S.
Haggag
,
J.
Dehnel
,
M.
Mor
,
E.
Lifshitz
, and
S.
Ruhman
, “
Testing the fate of nascent holes in CdSe nanocrystals with sub-10 fs pump-probe spectroscopy
,”
Nanoscale
13
,
1982
1987
(
2021
).
61.
S. L.
Sewall
,
R. R.
Cooney
,
E. A.
Dias
,
P.
Tyagi
, and
P.
Kambhampati
, “
State-resolved observation in real time of the structural dynamics of multiexcitons in semiconductor nanocrystals
,”
Phys. Rev. B
84
,
235304
(
2011
).
62.
G.
Grimaldi
,
J. J.
Geuchies
,
W.
Van Der Stam
,
I.
du Fossé
,
B.
Brynjarsson
,
N.
Kirkwood
,
S.
Kinge
,
L. D. A.
Siebbeles
, and
A. J.
Houtepen
, “
Spectroscopic evidence for the contribution of holes to the bleach of Cd-chalcogenide quantum dots
,”
Nano Lett.
19
,
3002
3010
(
2019
).
63.
K.
Bouda
,
A.
Fučíková
,
J.
Pšenčík
, and
J.
Alster
, “
Solvent signals in two-dimensional electronic spectroscopy
,”
AIP Adv.
12
,
115306
(
2022
).
64.
T.
Polack
, “
A filtering procedure for systematic removal of pump-perturbed polarization artifacts
,”
Opt. Express
14
,
5823
(
2006
).
65.
F. V. A.
De Camargo
,
L.
Grimmelsmann
,
H. L.
Anderson
,
S. R.
Meech
, and
I. A.
Heisler
, “
Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: The role of the laser spectrum
,”
Phys. Rev. Lett.
118
,
033001
(
2017
).
66.
E.
Collini
,
H.
Gattuso
,
L.
Bolzonello
,
A.
Casotto
,
A.
Volpato
,
C. N.
Dibenedetto
,
E.
Fanizza
,
M.
Striccoli
, and
F.
Remacle
, “
Quantum phenomena in nanomaterials: Coherent superpositions of fine structure states in CdSe nanocrystals at room temperature
,”
J. Phys. Chem. C
123
,
31286
31293
(
2019
).
67.
S. L.
Sewall
,
R. R.
Cooney
,
K. E. H.
Anderson
,
E. A.
Dias
, and
P.
Kambhampati
, “
State-to-state exciton dynamics in semiconductor quantum dots
,”
Phys. Rev. B
74
,
235328
(
2006
).
68.
S. L.
Sewall
,
R. R.
Cooney
,
K. E. H.
Anderson
,
E. A.
Dias
,
D. M.
Sagar
, and
P.
Kambhampati
, “
State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots
,”
J. Chem. Phys.
129
,
084701
(
2008
).

Supplementary Material

You do not currently have access to this content.