Deep neural network (DNN) potentials have recently gained popularity in computer simulations of a wide range of molecular systems, from liquids to materials. In this study, we explore the possibility of combining the computational efficiency of the DeePMD framework and the demonstrated accuracy of the MB-pol data-driven, many-body potential to train a DNN potential for large-scale simulations of water across its phase diagram. We find that the DNN potential is able to reliably reproduce the MB-pol results for liquid water, but provides a less accurate description of the vapor–liquid equilibrium properties. This shortcoming is traced back to the inability of the DNN potential to correctly represent many-body interactions. An attempt to explicitly include information about many-body effects results in a new DNN potential that exhibits the opposite performance, being able to correctly reproduce the MB-pol vapor–liquid equilibrium properties, but losing accuracy in the description of the liquid properties. These results suggest that DeePMD-based DNN potentials are not able to correctly “learn” and, consequently, represent many-body interactions, which implies that DNN potentials may have limited ability to predict the properties for state points that are not explicitly included in the training process. The computational efficiency of the DeePMD framework can still be exploited to train DNN potentials on data-driven many-body potentials, which can thus enable large-scale, “chemically accurate” simulations of various molecular systems, with the caveat that the target state points must have been adequately sampled by the reference data-driven many-body potential in order to guarantee a faithful representation of the associated properties.

1.
S.
Lifson
and
A.
Warshel
, “
Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules
,”
J. Chem. Phys.
49
,
5116
5129
(
1968
).
2.
A.
Warshel
and
S.
Lifson
, “
Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes
,”
J. Chem. Phys.
53
,
582
594
(
1970
).
3.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
4.
B. J.
Alder
and
T. E.
Wainwright
, “
Phase transition for a hard sphere system
,”
J. Chem. Phys.
27
,
1208
1209
(
1957
).
5.
M. S.
Gordon
,
G.
Barca
,
S. S.
Leang
,
D.
Poole
,
A. P.
Rendell
,
J. L.
Galvez Vallejo
, and
B.
Westheimer
, “
Novel computer architectures and quantum chemistry
,”
J. Phys. Chem. A
124
,
4557
4582
(
2020
).
6.
J. W.
Ponder
,
C.
Wu
,
P.
Ren
,
V. S.
Pande
,
J. D.
Chodera
,
M. J.
Schnieders
,
I.
Haque
,
D. L.
Mobley
,
D. S.
Lambrecht
,
R. A.
DiStasio
, Jr.
,
M.
Head-Gordon
,
G. N. I.
Clark
,
M. E.
Johnson
, and
T.
Head-Gordon
, “
Current status of the AMOEBA polarizable force field
,”
J. Phys. Chem. B
114
,
2549
2564
(
2010
).
7.
K.
Vanommeslaeghe
and
A. D.
MacKerell
, Jr.
, “
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design
,”
Biochim. Biophys. Acta, Gen. Subj.
1850
,
861
871
(
2015
).
8.
G. A.
Cisneros
,
K. T.
Wikfeldt
,
L.
Ojamäe
,
J.
Lu
,
Y.
Xu
,
H.
Torabifard
,
A. P.
Bartók
,
G.
Csányi
,
V.
Molinero
, and
F.
Paesani
, “
Modeling molecular interactions in water: From pairwise to many-body potential energy functions
,”
Chem. Rev.
116
,
7501
7528
(
2016
).
9.
Z.
Jing
,
C.
Liu
,
S. Y.
Cheng
,
R.
Qi
,
B. D.
Walker
,
J.-P.
Piquemal
, and
P.
Ren
, “
Polarizable force fields for biomolecular simulations: Recent advances and applications
,”
Annu. Rev. Biophys.
48
,
371
394
(
2019
).
10.
V. S.
Inakollu
,
D. P.
Geerke
,
C. N.
Rowley
, and
H.
Yu
, “
Polarisable force fields: What do they add in biomolecular simulations?
,”
Curr. Opin. Struct. Biol.
61
,
182
190
(
2020
).
11.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
, “
DREIDING: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
,
8897
8909
(
1990
).
12.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
 III
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
13.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general AMBER force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
14.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A.
MacKerell
, Jr.
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
690
(
2010
).
15.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD(T)-F12 approximation
,”
J. Chem. Phys.
127
,
221106
(
2007
).
16.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
, “
Simplified CCSD(T)-F12 methods: Theory and benchmarks
,”
J. Chem. Phys.
130
,
054104
(
2009
).
17.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
, “
Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets
,”
J. Chem. Phys.
131
,
194105
(
2009
).
18.
U.
Góra
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
, “
Interaction energies of large clusters from many-body expansion
,”
J. Comput. Phys.
135
,
224102
(
2011
).
19.
D.
Manna
,
M. K.
Kesharwani
,
N.
Sylvetsky
, and
J. M. L.
Martin
, “
Conventional and explicitly correlated ab initio benchmark study on water clusters: Revision of the BEGDB and WATER27 data sets
,”
J. Chem. Theory Comput.
13
,
3136
3152
(
2017
).
20.
J. P.
Heindel
,
K. M.
Herman
,
E.
Aprà
, and
S. S.
Xantheas
, “
Guest–host interactions in clathrate hydrates: Benchmark MP2 and CCSD(T)/CBS binding energies of CH4, CO2, and H2S in (H2O)20 cages
,”
J. Phys. Chem. Lett.
12
,
7574
7582
(
2021
).
21.
R. K.
Nesbet
, “
Atomic Bethe-Goldstone equations
,” in , edited by
R.
LeFebvre
and
C.
Moser
(
John Wiley & Sons
,
1969
), Vol. 14, pp.
1
34
.
22.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
, “
Predictions of the properties of water from first principles
,”
Science
315
,
1249
1252
(
2007
).
23.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
, “
Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface
,”
J. Chem. Phys.
128
,
094313
(
2008
).
24.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
, “
Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water
,”
J. Chem. Phys.
128
,
094314
(
2008
).
25.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
, “
Ab initio potential energy and dipole moment surfaces of (H2O)2
,”
J. Phys. Chem. A
110
,
445
451
(
2006
).
26.
Y.
Wang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Full-dimensional, ab initio potential energy and dipole moment surfaces for water
,”
J. Chem. Phys.
131
,
054511
(
2009
).
27.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer
,”
J. Chem. Phys.
134
,
094509
(
2011
).
28.
Y.
Wang
and
J. M.
Bowman
, “
Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters
,”
J. Chem. Phys.
134
,
154510
(
2011
).
29.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Toward a universal water model: First principles simulations from the dimer to the liquid phase
,”
J. Phys. Chem. Lett.
3
,
3765
3769
(
2012
).
30.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
31.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers. II. Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Phys.
10
, 1599–1607 (
2014
).
32.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a ‘first-principles’ water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
33.
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. I. Halide–water dimer potential energy surfaces
,”
J. Chem. Theory Comput.
12
,
2698
2705
(
2016
).
34.
M.
Riera
,
N.
Mardirossian
,
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. Alkali-water dimer potential energy surfaces
,”
J. Chem. Phys.
147
,
161715
(
2017
).
35.
V. W. D.
Cruzeiro
,
E.
Lambros
,
M.
Riera
,
R.
Roy
,
F.
Paesani
, and
A. W.
Götz
, “
Highly accurate many-body potentials for simulations of N2O5 in water: Benchmarks, development, and validation
,”
J. Chem. Theory Comput.
17
,
3931
3945
(
2021
).
36.
M.
Riera
,
E. P.
Yeh
, and
F.
Paesani
, “
Data-driven many-body models for molecular fluids: CO2/H2O mixtures as a case study
,”
J. Chem. Theory Comput.
16
,
2246
2257
(
2020
).
37.
M.
Riera
,
A.
Hirales
,
R.
Ghosh
, and
F.
Paesani
, “
Data-driven many-body models with chemical accuracy for CH4/H2O mixtures
,”
J. Phys. Chem. A
124
,
11207
11221
(
2020
).
38.
S.
Yue
,
M.
Riera
,
R.
Ghosh
,
A. Z.
Panagiotopoulos
, and
F.
Paesani
, “
Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases
,”
J. Chem. Phys.
156
,
104503
(
2022
).
39.
F.
Paesani
, “
Getting the right answers for the right reasons: Toward predictive molecular simulations of water with many-body potential energy functions
,”
Acc. Chem. Res.
49
,
1844
1851
(
2016
).
40.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
41.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
42.
J.
Behler
, “
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
,”
Phys. Chem. Chem. Phys.
13
,
17930
17955
(
2011
).
43.
J.
Behler
, “
Representing potential energy surfaces by high-dimensional neural network potentials
,”
J. Phys.: Condens. Matter
26
,
183001
(
2014
).
44.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
Von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
,”
J. Phys. Chem. Lett.
6
,
2326
2331
(
2015
).
45.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
46.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
47.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
48.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules
,”
Sci. Data
4
,
170193
(
2017
).
49.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
50.
B.
Cheng
,
E. A.
Engel
,
J.
Behler
,
C.
Dellago
, and
M.
Ceriotti
, “
Ab initio thermodynamics of liquid and solid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
1110
1115
(
2019
).
51.
C.
Schran
,
J.
Behler
, and
D.
Marx
, “
Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground
,”
J. Chem. Theory Comput.
16
,
88
99
(
2019
).
52.
M.
Haghighatlari
and
J.
Hachmann
, “
Advances of machine learning in molecular modeling and simulation
,”
Curr. Opin. Chem. Eng.
23
,
51
57
(
2019
).
53.
O.
Wohlfahrt
,
C.
Dellago
, and
M.
Sega
, “
Ab initio structure and thermodynamics of the RPBE-D3 water/vapor interface by neural-network molecular dynamics
,”
J. Chem. Phys.
153
,
144710
(
2020
).
54.
C.
Schran
,
K.
Brezina
, and
O.
Marsalek
, “
Committee neural network potentials control generalization errors and enable active learning
,”
J. Chem. Phys.
153
,
104105
(
2020
).
55.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
Neural network potential energy surfaces for small molecules and reactions
,”
Chem. Rev.
121
,
10187
10217
(
2020
).
56.
P.
Gkeka
,
G.
Stoltz
,
A.
Barati Farimani
,
Z.
Belkacemi
,
M.
Ceriotti
,
J. D.
Chodera
,
A. R.
Dinner
,
A. L.
Ferguson
,
J.-B.
Maillet
,
H.
Minoux
,
C.
Peter
,
F.
Pietrucci
,
A.
Silveira
,
A.
Tkatchenko
,
Z.
Trstanova
,
R.
Wiewiora
, and
T.
Lelièvre
, “
Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials and biological systems
,”
J. Chem. Theory Comput.
16
,
4757
4775
(
2020
).
57.
Z. L.
Glick
,
D. P.
Metcalf
,
A.
Koutsoukas
,
S. A.
Spronk
,
D. L.
Cheney
, and
C. D.
Sherrill
, “
AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials
,”
J. Chem. Phys.
153
,
044112
(
2020
).
58.
C.
Schran
,
F. L.
Thiemann
,
P.
Rowe
,
E. A.
Müller
,
O.
Marsalek
, and
A.
Michaelides
, “
Machine learning potentials for complex aqueous systems made simple
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2110077118
(
2021
).
59.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
,”
Nat. Commun.
12
,
398
(
2021
).
60.
J.
Behler
, “
Four generations of high-dimensional neural network potentials
,”
Chem. Rev.
121
,
10037
10072
(
2021
).
61.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
62.
T.
Zubatiuk
and
O.
Isayev
, “
Development of multimodal machine learning potentials: Toward a physics-aware artificial intelligence
,”
Acc. Chem. Res.
54
,
1575
1585
(
2021
).
63.
V.
Zaverkin
,
D.
Holzmüller
,
R.
Schuldt
, and
J.
Kästner
, “
Predicting properties of periodic systems from cluster data: A case study of liquid water
,”
J. Chem. Phys.
156
,
114103
(
2022
).
64.
L. D.
Jacobson
,
J. M.
Stevenson
,
F.
Ramezanghorbani
,
D.
Ghoreishi
,
K.
Leswing
,
E. D.
Harder
, and
R.
Abel
, “
Transferable neural network potential energy surfaces for closed-shell organic molecules: Extension to ions
,”
J. Chem. Theory Comput.
18
,
2354
2366
(
2022
).
65.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022
).
66.
J.
Han
,
L.
Zhang
, and
R.
Car
, “
Deep potential: A general representation of a many-body potential energy surface
,”
Commun. Comput. Phys.
23
,
629
639
(
2018
).
67.
J.
Rezac
and
P.
Hobza
, “
Benchmark calculations of interaction energies in noncovalent complexes and their applications
,”
Chem. Rev.
116
,
5038
5071
(
2016
).
68.
F.
Paesani
, “
Water: Many-body potential from first principles (from the gas to the liquid phase)
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer
,
2020
), pp.
635
660
.
69.
B. B.
Bizzarro
,
C. K.
Egan
, and
F.
Paesani
, “
Nature of halide–water interactions: Insights from many-body representations and density functional theory
,”
J. Chem. Theory Comput.
15
,
2983
2995
(
2019
).
70.
C. K.
Egan
,
B. B.
Bizzarro
,
M.
Riera
, and
F.
Paesani
, “
Nature of alkali ion–water interactions: Insights from many-body representations and density functional theory. II
,”
J. Chem. Theory Comput.
16
,
3055
3072
(
2020
).
71.
L.
Zhang
,
J.
Han
,
H.
Wang
,
W.
Saidi
,
R.
Car
, and
W.
E
, “
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
,”
Adv. Neural Inf. Process. Syst.
31
,
4436
4446
(
2018
).
72.
S.
Yue
,
M. C.
Muniz
,
M. F.
Calegari Andrade
,
L.
Zhang
,
R.
Car
, and
A. Z.
Panagiotopoulos
, “
When do short-range atomistic machine-learning models fall short?
,”
J. Chem. Phys.
154
,
034111
(
2021
).
73.
R. G.
Parr
, “
Density functional theory of atoms and molecules
,” in
Horizons of Quantum Chemistry
(
Springer
,
1980
), pp.
5
15
.
74.
S.
Vuckovic
,
S.
Song
,
J.
Kozlowski
,
E.
Sim
, and
K.
Burke
, “
Density functional analysis: The theory of density-corrected DFT
,”
J. Chem. Theory Comput.
15
,
6636
6646
(
2019
).
75.
S.
Dasgupta
,
E.
Lambros
,
J. P.
Perdew
, and
F.
Paesani
, “
Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism
,”
Nat. Commun.
12
,
6359
(
2021
).
76.
S.
Song
,
S.
Vuckovic
,
E.
Sim
, and
K.
Burke
, “
Density-corrected DFT explained: Questions and answers
,”
J. Chem. Theory Comput.
18
,
817
827
(
2022
).
77.
E.
Sim
,
S.
Song
,
S.
Vuckovic
, and
K.
Burke
, “
Improving results by improving densities: Density-corrected density functional theory
,”
J. Am. Chem. Soc.
144
,
6625
6639
(
2022
).
78.
E.
Palos
,
E.
Lambros
,
S.
Swee
,
J.
Hu
,
S.
Dasgupta
, and
F.
Paesani
, “
Assessing the interplay between functional-driven and density-driven errors in DFT models of water
,”
J. Chem. Theory Comput.
18
,
3410
3426
(
2022
).
79.
S.
Dasgupta
,
C.
Shahi
,
P.
Bhetwal
,
J. P.
Perdew
, and
F.
Paesani
, “
How good is the density-corrected scan functional for neutral and ionic aqueous systems, and what is so right about the Hartree–Fock density?
,”
J. Chem. Theory Comput.
18
,
4745
(
2022
).
80.
E.
Lambros
,
J.
Hu
, and
F.
Paesani
, “
Assessing the accuracy of the SCAN functional for water through a many-body analysis of the adiabatic connection formula
,”
J. Chem. Theory Comput.
17
,
3739
3749
(
2021
).
81.
J. A.
Barker
and
R. O.
Watts
, “
Structure of water; A Monte Carlo calculation
,”
Chem. Phys. Lett.
3
,
144
145
(
1969
).
82.
A.
Rahman
and
F. H.
Stillinger
, “
Molecular dynamics study of liquid water
,”
J. Chem. Phys.
55
,
3336
3359
(
1971
).
83.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Pettersson
, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
7500
(
2016
).
84.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
, “
On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice
,”
J. Chem. Phys.
145
,
194504
(
2016
).
85.
J. O.
Richardson
,
C.
Pérez
,
S.
Lobsiger
,
A. A.
Reid
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
,
D. J.
Wales
,
B. H.
Pate
, and
S. C.
Althorpe
, “
Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism
,”
Science
351
,
1310
1313
(
2016
).
86.
W. T. S.
Cole
,
J. D.
Farrell
,
D. J.
Wales
, and
R. J.
Saykally
, “
Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm
,”
Science
352
,
1194
1197
(
2016
).
87.
S. E.
Brown
,
A. W.
Götz
,
X.
Cheng
,
R. P.
Steele
,
V. A.
Mandelshtam
, and
F.
Paesani
, “
Monitoring water clusters ‘melt’ through vibrational spectroscopy
,”
J. Am. Chem. Soc.
139
,
7082
7088
(
2017
).
88.
S. K.
Reddy
,
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function
,”
J. Chem. Phys.
147
,
244504
(
2017
).
89.
G. R.
Medders
and
F.
Paesani
, “
Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum
,”
J. Am. Chem. Soc.
138
,
3912
3919
(
2016
).
90.
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature dependence of the air/water interface revealed by polarization sensitive sum-frequency generation spectroscopy
,”
J. Phys. Chem. B
122
,
4356
4365
(
2018
).
91.
M. C.
Muniz
,
T. E.
Gartner
 III
,
M.
Riera
,
C.
Knight
,
S.
Yue
,
F.
Paesani
, and
A. Z.
Panagiotopoulos
, “
Vapor–liquid equilibrium of water with the MB-pol many-body potential
,”
J. Chem. Phys.
154
,
211103
(
2021
).
92.
C. H.
Pham
,
S. K.
Reddy
,
K.
Chen
,
C.
Knight
, and
F.
Paesani
, “
Many-body interactions in ice
,”
J. Chem. Theory Comput.
13
,
1778
1784
(
2017
).
93.
D. R.
Moberg
,
S. C.
Straight
,
C.
Knight
, and
F.
Paesani
, “
Molecular origin of the vibrational structure of ice Ih
,”
J. Phys. Chem. Lett.
8
,
2579
2583
(
2017
).
94.
D. R.
Moberg
,
P. J.
Sharp
, and
F.
Paesani
, “
Molecular-level interpretation of vibrational spectra of ordered ice phases
,”
J. Phys. Chem. B
122
,
10572
10581
(
2018
).
95.
D. R.
Moberg
,
D.
Becker
,
C. W.
Dierking
,
F.
Zurheide
,
B.
Bandow
,
U.
Buck
,
A.
Hudait
,
V.
Molinero
,
F.
Paesani
, and
T.
Zeuch
, “
The end of ice I
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
24413
24419
(
2019
).
96.
T. E.
Gartner
 III
,
K. M.
Hunter
,
E.
Lambros
,
A.
Caruso
,
M.
Riera
,
G. R.
Medders
,
A. Z.
Panagiotopoulos
,
P. G.
Debenedetti
, and
F.
Paesani
, “
Anomalies and local structure of liquid water from boiling to the supercooled regime as predicted by the many-body MB-pol model
,”
J. Phys. Chem.
13
,
3652
3658
(
2022
).
97.
R. J.
Speedy
and
C. A.
Angell
, “
Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45 °C
,”
J. Chem. Phys.
65
,
851
858
(
1976
).
98.
C. A.
Angell
,
W. J.
Sichina
, and
M.
Oguni
, “
Heat capacity of water at extremes of supercooling and superheating
,”
J. Phys. Chem.
86
,
998
1002
(
1982
).
99.
K. H.
Kim
,
A.
Späh
,
H.
Pathak
,
F.
Perakis
,
D.
Mariedahl
,
K.
Amann-Winkel
,
J. A.
Sellberg
,
J. H.
Lee
,
S.
Kim
,
J.
Park
,
T.
Katayama
, and
A.
Nilsson
, “
Maxima in the thermodynamic response and correlation functions of deeply supercooled water
,”
Science
358
,
1589
1593
(
2017
).
100.
H.
Pathak
,
A.
Späh
,
N.
Esmaeildoost
,
J. A.
Sellberg
,
K. H.
Kim
,
F.
Perakis
,
K.
Amann-Winkel
,
M.
Ladd-Parada
,
J.
Koliyadu
,
T. J.
Lane
,
C.
Yang
,
H. T.
Lemke
,
A. R.
Oggenfuss
,
P. J. M.
Johnson
,
Y.
Deng
,
S.
Zerdane
,
R.
Mankowsky
,
P.
Beaud
, and
A.
Nilsson
, “
Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2018379118
(
2021
).
101.
K. H.
Kim
,
K.
Amann-Winkel
,
N.
Giovambattista
,
A.
Späh
,
F.
Perakis
,
H.
Pathak
,
M. L.
Parada
,
C.
Yang
,
D.
Mariedahl
,
T.
Eklund
,
T. J.
Lane
,
S.
You
,
S.
Jeong
,
M.
Weston
,
J. H.
Lee
,
I.
Eom
,
M.
Kim
,
J.
Park
,
S. H.
Chun
,
P. H.
Poole
, and
A.
Nilsson
, “
Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure
,”
Science
370
,
978
982
(
2020
).
102.
L.
Kringle
,
W. A.
Thornley
,
B. D.
Kay
, and
G. A.
Kimmel
, “
Reversible structural transformations in supercooled liquid water from 135 to 245 K
,”
Science
369
,
1490
1492
(
2020
).
103.
T. E.
Gartner
 III
,
L.
Zhang
,
P. M.
Piaggi
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Signatures of a liquid–liquid transition in an ab initio deep neural network model for water
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
26040
26046
(
2020
).
104.
G. M.
Sommers
,
M. F. C.
Andrade
,
L.
Zhang
,
H.
Wang
, and
R.
Car
, “
Raman spectrum and polarizability of liquid water from deep neural networks
,”
Phys. Chem. Chem. Phys.
22
,
10592
10602
(
2020
).
105.
L.
Zhang
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Phase diagram of a deep potential water model
,”
Phys. Rev. Lett.
126
,
236001
(
2021
).
106.
C.
Zhang
,
F.
Tang
,
M.
Chen
,
J.
Xu
,
L.
Zhang
,
D. Y.
Qiu
,
J. P.
Perdew
,
M. L.
Klein
, and
X.
Wu
, “
Modeling liquid water by climbing up Jacob’s ladder in density functional theory facilitated by using deep neural network potentials
,”
J. Phys. Chem. B
125
,
11444
11456
(
2021
).
107.
W.
Liang
,
G.
Lu
, and
J.
Yu
, “
Machine-learning-driven simulations on microstructure and thermophysical properties of MgCl2–KCl eutectic
,”
ACS Appl. Mater. Interfaces
13
,
4034
4042
(
2021
).
108.
T.
Wen
,
R.
Wang
,
L.
Zhu
,
L.
Zhang
,
H.
Wang
,
D. J.
Srolovitz
, and
Z.
Wu
, “
Specialising neural network potentials for accurate properties and application to the mechanical response of titanium
,”
npj Comput. Mater.
7
,
206
(
2021
).
109.
D.
Lu
,
H.
Wang
,
M.
Chen
,
L.
Lin
,
R.
Car
,
W.
E
,
W.
Jia
, and
L.
Zhang
, “
86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy
,”
Comput. Phys. Commun.
259
,
107624
(
2021
).
110.
H.
Niu
,
L.
Bonati
,
P. M.
Piaggi
, and
M.
Parrinello
, “
Ab initio phase diagram and nucleation of gallium
,”
Nat. Commun.
11
,
2654
(
2020
).
111.
Z.
Guo
,
D.
Lu
,
Y.
Yan
,
S.
Hu
,
R.
Liu
,
G.
Tan
,
N.
Sun
,
W.
Jiang
,
L.
Liu
,
Y.
Chen
 et al, “
Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms
,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(
Association for Computing Machinery, New York,
,
2022
), pp.
205
218
.
112.
H.
Partridge
and
D. W.
Schwenke
, “
The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data
,”
J. Chem. Phys.
106
,
4618
4639
(
1997
).
113.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
114.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
115.
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
,
W.
E
, and
D. P.
Gen
, “
A concurrent learning platform for the generation of reliable deep learning based potential energy models
,”
Comput. Phys. Commun.
253
,
107206
(
2020
).
116.
Paesani Research Group
, MBX: A many-body energy and force calculator, available at https://github.com/paesanilab/MBX (
2022
).
117.
M.
Pinheiro
,
F.
Ge
,
N.
Ferré
,
P. O.
Dral
, and
M.
Barbatti
, “
Choosing the right molecular machine learning potential
,”
Chem. Sci.
12
,
14396
14413
(
2021
).
118.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
,
134103
(
2004
).
119.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
120.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
121.
P. M.
Piaggi
,
A. Z.
Panagiotopoulos
,
P. G.
Debenedetti
, and
R.
Car
, “
Phase equilibrium of water with hexagonal and cubic ice using the scan functional
,”
J. Chem. Theory Comput.
17
,
3065
3077
(
2021
).
122.
G. S.
Kell
, “
Isothermal compressibility of liquid water at 1 atm
,”
J. Chem. Eng. Data
15
,
119
122
(
1970
).
123.
J.
Zinn-Justin
, “
Precise determination of critical exponents and equation of state by field theory methods
,”
Phys. Rep.
344
,
159
178
(
2001
).
124.
P. J.
Linstrom
and
W. G.
Mallard
, “
The NIST chemistry WebBook: A chemical data resource on the internet
,”
J. Chem. Eng. Data
46
,
1059
1063
(
2001
).
125.
G. R.
Medders
,
A. W.
Götz
,
M. A.
Morales
,
P.
Bajaj
, and
F.
Paesani
, “
On the representation of many-body interactions in water
,”
J. Chem. Phys.
143
,
104102
(
2015
).
126.
M.
Riera
,
E.
Lambros
,
T. T.
Nguyen
,
A. W.
Götz
, and
F.
Paesani
, “
Low-order many-body interactions determine the local structure of liquid water
,”
Chem. Sci.
10
,
8211
8218
(
2019
).
127.
E.
Lambros
and
F.
Paesani
, “
How good are polarizable and flexible models for water: Insights from a many-body perspective
,”
J. Chem. Phys.
153
,
060901
(
2020
).
128.
P.
Schienbein
and
D.
Marx
, “
Liquid–vapor phase diagram of RPBE-D3 water: Electronic properties along the coexistence curve and in the supercritical phase
,”
J. Phys. Chem. B
122
,
3318
3329
(
2017
).
129.
S. L.
Bore
and
F.
Paesani
, “
Quantum phase diagram of water
,” chemRxiv, (
2023
).

Supplementary Material

You do not currently have access to this content.