A new algorithm based on a rigorous theorem and quantum data computationally mined from element 118 guarantees automated construction of initial Fermi–Löwdin-Orbital (FLO) starting points for all elements in the Periodic Table. It defines a means for constructing a small library of scalable FLOs for universal use in molecular and solid-state calculations. The method can be systematically improved for greater efficiency and for applications to excited states such as x-ray excitations and optically silent excitations. FLOs were introduced to recast the Perdew–Zunger self-interaction correction (PZSIC) into an explicit unitarily invariant form. The FLOs are generated from a set of N quasi-classical electron positions, referred to as Fermi-Orbital descriptors (FODs), and a set of N-orthonormal single-electron orbitals. FOD positions, when optimized, minimize the PZSIC total energy. However, creating sets of starting FODs that lead to a positive definite Fermi orbital overlap matrix has proven to be challenging for systems composed of open-shell atoms and ions. The proof herein guarantees the existence of a FLOSIC solution and further guarantees that if a solution for N electrons is found, it can be used to generate a minimum of N − 1 and a maximum of 2N − 2 initial starting points for systems composed of a smaller number of electrons. Applications to heavy and super-heavy atoms are presented. All starting solutions reported here were obtained from a solution for element 118, Oganesson.

1.
J. F.
Janak
, “
Proof that eni=ε in density-functional theory
,”
Phys. Rev. B
18
,
7165
7168
(
1978
).
2.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
(
1982
).
3.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
4.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
, “
Local-density Hartree–Fock theory of electronic states of molecules with self-interaction correction
,”
J. Chem. Phys.
80
,
1972
1975
(
1984
).
5.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
, “
Density-functional theory with self-interaction correction: Application to the lithium molecule
,”
J. Chem. Phys.
82
,
2688
2699
(
1985
).
6.
M. R.
Pederson
and
C. C.
Lin
, “
Localized and canonical atomic orbitals in self-interaction corrected local density functional approximation
,”
J. Chem. Phys.
88
,
1807
1817
(
1988
).
7.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Ionization potentials and electron affinities in the Perdew–Zunger self-interaction corrected density-functional theory
,”
J. Chem. Phys.
122
,
184107
(
2005
).
8.
M.
Levy
,
R. K.
Pathak
,
J. P.
Perdew
, and
S.
Wei
, “
Indirect-path methods for atomic and molecular energies, and new Koopmans theorems
,”
Phys. Rev. A
36
,
2491
2494
(
1987
).
9.
M. R.
Pederson
,
T.
Baruah
,
D.-y.
Kao
, and
L.
Basurto
, “
Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules
,”
J. Chem. Phys.
144
,
164117
(
2016
).
10.
W. L.
Luken
and
D. N.
Beratan
, “
Localized orbitals and the Fermi hole
,”
Theor. Chim. Acta
61
,
265
281
(
1982
).
11.
W. L.
Luken
and
J. C.
Culberson
, “
Localized orbitals based on the Fermi hole
,”
Theor. Chim. Acta
66
,
279
293
(
1984
).
12.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
13.
M. R.
Pederson
, “
Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms
,”
J. Chem. Phys.
142
,
064112
(
2015
).
14.
M. R.
Pederson
and
T.
Baruah
, “
Chapter eight: Self-interaction corrections within the Fermi-orbital-based formalism
,”
Adv. At., Mol., Opt. Phys.
64
,
153
180
(
2015
).
15.
S.
Schwalbe
,
K.
Trepte
,
L.
Fiedler
,
A. I.
Johnson
,
J.
Kraus
,
T.
Hahn
,
J. E.
Peralta
,
K. A.
Jackson
, and
J.
Kortus
, “
Interpretation and automatic generation of Fermi-orbital descriptors
,”
J. Comput. Chem.
40
,
2843
2857
(
2019
).
16.
D. B.
Nguyen
,
M. R.
Pederson
,
J. P.
Perdew
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Initial Fermi orbital descriptors for FLOSIC calculations: The quick-FOD method
,”
Chem. Phys. Lett.
780
,
138952
(
2021
).
17.
R. P.
Joshi
,
K.
Trepte
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
L.
Basurto
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Fermi-Löwdin orbital self-interaction correction to magnetic exchange couplings
,”
J. Chem. Phys.
149
,
164101
(
2018
).
18.
K. P. K.
Withanage
,
S.
Akter
,
C.
Shahi
,
R. P.
Joshi
,
C.
Diaz
,
Y.
Yamamoto
,
R.
Zope
,
T.
Baruah
,
J. P.
Perdew
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Self-interaction-free electric dipole polarizabilities for atoms and their ions using the Fermi-Löwdin self-interaction correction
,”
Phys. Rev. A
100
,
012505
(
2019
).
19.
A. I.
Johnson
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
J. E.
Peralta
, and
K. A.
Jackson
, “
The effect of self-interaction error on electrostatic dipoles calculated using density functional theory
,”
J. Chem. Phys.
151
,
174106
(
2019
).
20.
J.
Vargas
,
P.
Ufondu
,
T.
Baruah
,
Y.
Yamamoto
,
K. A.
Jackson
, and
R. R.
Zope
, “
Importance of self-interaction-error removal in density functional calculations on water cluster anions
,”
Phys. Chem. Chem. Phys.
22
,
3789
3799
(
2020
).
21.
K.
Sharkas
,
K.
Wagle
,
B.
Santra
,
S.
Akter
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
,
J. P.
Perdew
, and
J. E.
Peralta
, “
Self-interaction error overbinds water clusters but cancels in structural energy differences
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
11283
11288
(
2020
).
22.
S.
Akter
,
Y.
Yamamoto
,
C. M.
Diaz
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew-Zunger and locally scaled self-interaction corrected methods
,”
J. Chem. Phys.
153
,
164304
(
2020
).
23.
S.
Akter
,
J. A.
Vargas
,
K.
Sharkas
,
J. E.
Peralta
,
K. A.
Jackson
,
T.
Baruah
, and
R. R.
Zope
, “
How well do self-interaction corrections repair the over-estimation of static polarizabilities in density functional calculations?
,”
Phys. Chem. Chem. Phys.
23
,
18678
(
2021
).
24.
P.
Mishra
,
Y.
Yamamoto
,
J. K.
Johnson
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction-errors in barrier heights using locally scaled and Perdew-Zunger self-interaction methods
,”
J. Chem. Phys.
156
,
014306
(
2022
).
25.
L.
Li
,
K.
Trepte
,
K. A.
Jackson
, and
J. K.
Johnson
, “
Application of self-interaction corrected density functional theory to early, middle, and late transition states
,”
J. Phys. Chem. A
124
,
8223
8234
(
2020
).
26.
J.
Batool
,
T.
Hahn
, and
M. R.
Pederson
, “
Magnetic signatures of hydroxyl- and water-terminated neutral and tetra-anionic Mn12-acetate
,”
J. Comput. Chem.
40
,
2301
2308
(
2019
).
27.
D.-y.
Kao
,
K.
Withanage
,
T.
Hahn
,
J.
Batool
,
J.
Kortus
, and
K.
Jackson
, “
Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li-Kr
,”
J. Chem. Phys.
147
,
164107
(
2017
).
28.
W.
Kossel
, “
Ueber molekübildung als frage des atombaus
,”
Ann. Phys.
354
,
229
(
1916
).
29.
J. P.
Perdew
,
S. T. u. R.
Chowdhury
,
C.
Shahi
,
A. D.
Kaplan
,
D.
Song
, and
E. J.
Bylaska
, “
Symmetry breaking with the SCAN density functional describes strong correlation in the singlet carbon dimer
,”
J. Phys. Chem. A
127
,
384
(
2023
).
30.
K.
Trepte
,
S.
Schwalbe
,
S.
Liebing
,
W. T.
Schulze
,
J.
Kortus
,
H.
Myneni
,
A. V.
Ivanov
, and
S.
Lehtola
, “
Chemical bonding theories as guides for self-interaction corrected solutions: Multiple local minima and symmetry breaking
,”
J. Chem. Phys.
155
,
224109
(
2021
).
31.
Z.
Hooshmand
and
M. R.
Pederson
, “
Ozone: Addressing the complexities within FLOSIC
” (Submitted) (
2022
).
32.
G. H.
Wannier
, “
The structure of electronic excitation levels in insulating crystals
,”
Phys. Rev.
52
,
191
197
(
1937
).
33.
M. R.
Pederson
,
R. A.
Heaton
, and
J. G.
Harrison
, “
Metallic state of the free-electron gas within the self-interaction-corrected local-spin-density approximation
,”
Phys. Rev. B
39
,
1581
1586
(
1989
).
34.
B.
Santra
and
J. P.
Perdew
, “
Perdew-Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms?
,”
J. Chem. Phys.
150
,
174106
(
2019
).
35.
K. P. K.
Withanage
,
K. A.
Jackson
, and
M. R.
Pederson
, “
Complex Fermi-Löwdin orbital self-interaction correction
,”
J. Chem. Phys.
156
,
231103
(
2022
).
36.
C.
Shahi
,
P.
Bhattarai
,
K.
Wagle
,
B.
Santra
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
K. A.
Jackson
,
J. E.
Peralta
,
K.
Trepte
,
S.
Lehtola
,
N. K.
Nepal
,
H.
Myneni
,
B.
Neupane
,
S.
Adhikari
,
A.
Ruzsinszky
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
, and
J. P.
Perdew
, “
Stretched or noded orbital densities and self-interaction correction in density functional theory
,”
J. Chem. Phys.
150
,
174102
(
2019
).
37.
K.
Jackson
and
M. R.
Pederson
, “
Accurate forces in a local-orbital approach to the local-density approximation
,”
Phys. Rev. B
42
,
3276
3281
(
1990
).
38.
M. R.
Pederson
,
D. V.
Porezag
,
J.
Kortus
, and
D. C.
Patton
, “
Strategies for massively parallel local-orbital-based electronic structure methods
,”
Phys. Status Solidi B
217
,
197
218
(
2000
).
39.
D.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian basis sets for density-functional calculations
,”
Phys. Rev. A
60
,
2840
2847
(
1999
).
40.
M. R.
Pederson
and
K. A.
Jackson
, “
Variational mesh for quantum-mechanical simulations
,”
Phys. Rev. B
41
,
7453
7461
(
1990
).
41.
M. R.
Pederson
, “
Communication: Practical and rigorous reduction of the many-electron quantum mechanical Coulomb problem to O(N2/3) storage
,”
J. Chem. Phys.
142
,
141102
(
2015
).
42.
S.
Dolma
,
K.
Khandal
,
K.
Dema
, and
M. R.
Perderson
, “
Towards uncontracted basis sets in density funcational theory
,” in
2022 APS March Meeting
,
2022
.
43.
K.
Khandal
,
C. B.
Shahi
,
K.
Dema
,
Z.
Hooshmand
, and
M. R.
Perderson
, “
Symmetry group theory for density functional methods
,” in
2021 APS March Meeting
,
2021
.
44.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.10). Available at: https://physics.nist.gov/asd,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2022
.
45.
M. R.
Pederson
and
K. A.
Jackson
, “
Pseudoenergies for simulations on metallic systems
,”
Phys. Rev. B
43
,
7312
7315
(
1991
).
46.
K.
Dema
,
Z.
Hooshmand
, and
M. R.
Pederson
, “
Electronic and magnetic signatures of low-lying spin-flip excitonic states of Mn12O12-acetate
,”
Polyhedron
206
,
115332
(
2021
).
47.
T.
Baruah
and
M. R.
Pederson
, “
Density functional study on a light-harvesting carotenoid-porphyrin-C60 molecular triad
,”
J. Chem. Phys.
125
,
164706
(
2006
).
48.
J. J.
Joos
,
I.
Neefjes
,
L.
Seijo
, and
Z.
Barandiarán
, “
Charge transfer from Eu2+ to trivalent lanthanide co-dopants: Systematic behavior across the series
,”
J. Chem. Phys.
154
,
064704
(
2021
).
49.
H.
Ramanantoanina
, “
LFDFT—A practical tool for coordination chemistry
,”
Computation
10
,
70
(
2022
).
50.
G.
Bravo
,
A. I.
Johnson
,
K. P. K.
Withanage
,
K. A.
Jackson
, and
M. R.
Pederson
, “
A novel pathway from DFT to CI
,” in
2022 APS March Meeting
,
2022
.
51.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
, “
Charge-transfer complexes: Stringent tests for widely used density functionals
,”
J. Phys. Chem.
100
,
12265
12276
(
1996
).
52.
G.
Sini
,
J. S.
Sears
, and
J.-L.
Brédas
, “
Evaluating the performance of DFT functionals in assessing the interaction energy and ground-state charge transfer of donor/acceptor complexes: Tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) as a model case
,”
J. Chem. Theory Comput.
7
,
602
609
(
2011
).
You do not currently have access to this content.