Allosteric regulation of proteins continues to be an engaging research topic for the scientific community. Models describing allosteric communication have evolved from focusing on conformation-based descriptors of protein structural changes to appreciating the role of internal protein dynamics as a mediator of allostery. Here, we explain a “violin model” for allostery as a contemporary method for approaching the Cooper–Dryden model based on redistribution of protein thermal fluctuations. Based on graph theory, the violin model makes use of community network analysis to functionally cluster correlated protein motions obtained from molecular dynamics simulations. This Review provides the theory and workflow of the methodology and explains the application of violin model to unravel the workings of protein kinase A.

1.
S. S.
Taylor
,
M. M.
Keshwani
,
J. M.
Steichen
, and
A. P.
Kornev
, “
Evolution of the eukaryotic protein kinases as dynamic molecular switches
,”
Philos. Trans. R. Soc., B
367
(
1602
),
2517
2528
(
2012
).
2.
R.
Nussinov
and
C.-J.
Tsai
, “
Allostery in disease and in drug discovery
,”
Cell
153
(
2
),
293
305
(
2013
).
3.
L. G.
Ahuja
,
A. P.
Kornev
,
C. L.
McClendon
,
G.
Veglia
, and
S. S.
Taylor
, “
Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
6
),
E931
E940
(
2017
).
4.
N.
Jura
,
X.
Zhang
,
N. F.
Endres
,
M. A.
Seeliger
,
T.
Schindler
, and
J.
Kuriyan
, “
Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms
,”
Mol. Cell
42
(
1
),
9
22
(
2011
).
5.
W. W. A.
Schamel
,
B.
Alarcon
,
T.
Höfer
, and
S.
Minguet
, “
The allostery model of TCR regulation
,”
J. Immunol.
198
(
1
),
47
52
(
2017
).
6.
A. W.
Fenton
, “
Allostery: An illustrated definition for the ‘second secret of life’
,”.
Trends Biochem. Sci.
33
(
9
),
420
425
(
2008
).
7.
J.-P.
Changeux
, “
Allostery and the Monod-Wyman-Changeux model after 50 years
,”
Annu. Rev. Biophys.
41
,
103
133
(
2012
).
8.
S. J.
Wodak
,
E.
Paci
,
N. V.
Dokholyan
,
I. N.
Berezovsky
,
A.
Horovitz
,
J.
Li
,
V. J.
Hilser
,
I.
Bahar
,
J.
Karanicolas
,
G.
Stock
,
P.
Hamm
,
R. H.
Stote
,
J.
Eberhardt
,
Y.
Chebaro
,
A.
Dejaegere
,
M.
Cecchini
,
J. P.
Changeux
,
P. G.
Bolhuis
,
J.
Vreede
,
P.
Faccioli
,
S.
Orioli
,
R.
Ravasio
,
L.
Yan
,
C.
Brito
,
M.
Wyart
,
P.
Gkeka
,
I.
Rivalta
,
G.
Palermo
,
J. A.
McCammon
,
J.
Panecka-Hofman
,
R. C.
Wade
,
A.
Di Pizio
,
M. Y.
Niv
,
R.
Nussinov
,
C. J.
Tsai
,
H.
Jang
,
D.
Padhorny
,
D.
Kozakov
, and
T.
McLeish
, “
Allostery in its many disguises: From theory to applications
,”
Structure
27
,
566
(
2019
).
9.
J.
Monod
,
J.
Wyman
, and
J.-P.
Changeux
, “
On the nature of allosteric transitions: A plausible model
,”
J. Mol. Biol.
12
,
88
118
(
1965
).
10.
D. E.
Koshland
, Jr.
,
G.
Némethy
, and
D.
Filmer
, “
Comparison of experimental binding data and theoretical models in proteins containing subunits
,”
Biochemistry
5
(
1
),
365
385
(
1966
).
11.
W. A.
Eaton
,
E. R.
Henry
,
J.
Hofrichter
, and
A.
Mozzarelli
, “
Is cooperative oxygen binding by hemoglobin really understood?
,”
Nat. Struct. Biol.
6
(
4
),
351
358
(
1999
).
12.
W. A.
Eaton
,
E. R.
Henry
,
J.
Hofrichter
,
S.
Bettati
,
C.
Viappiani
, and
A.
Mozzarelli
, “
Evolution of allosteric models for hemoglobin
,”
IUBMB Life
59
(
8–9
),
586
599
(
2007
).
13.
E. R.
Henry
,
S.
Bettati
,
J.
Hofrichter
, and
W. A.
Eaton
, “
A tertiary two-state allosteric model for hemoglobin
,”
Biophys. Chem.
98
(
1–2
),
149
164
(
2002
).
14.
G. D.
Reinhart
, “
Quantitative analysis and interpretation of allosteric behavior
,”
Methods Enzymol.
380
,
187
203
(
2004
).
15.
P.
Purohit
,
A.
Mitra
, and
A.
Auerbach
, “
A stepwise mechanism for acetylcholine receptor channel gating
,”
Nature
446
(
7138
),
930
933
(
2007
).
16.
A.
Velyvis
,
H. K.
Schachman
, and
L. E.
Kay
, “
Application of methyl-TROSY NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase
,”
J. Mol. Biol.
387
(
3
),
540
547
(
2009
).
17.
M. J.
Whitley
and
A. L.
Lee
, “
Frameworks for understanding long-range intra-protein communication
,”
Curr. Protein Pept. Sci.
10
(
2
),
116
127
(
2009
).
18.
E. W.
Yu
and
D. E.
Koshland
, Jr.
, “
Propagating conformational changes over long (and short) distances in proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
98
(
17
),
9517
9520
(
2001
).
19.
V. J.
Hilser
,
J. O.
Wrabl
, and
H. N.
Motlagh
, “
Structural and energetic basis of allostery
,”
Annu. Rev. Biophys.
41
,
585
609
(
2012
).
20.
R. A.
Laskowski
,
F.
Gerick
, and
J. M.
Thornton
, “
The structural basis of allosteric regulation in proteins
,”
FEBS Lett.
583
(
11
),
1692
1698
(
2009
).
21.
H.
Prinz
, “
Hill coefficients, dose-response curves and allosteric mechanisms
,”
J. Chem. Biol.
3
(
1
),
37
44
(
2010
).
22.
U.
Haupts
,
J.
Tittor
, and
D.
Oesterhelt
, “
Closing in on bacteriorhodopsin: Progress in understanding the molecule
,”
Annu. Rev. Biophys. Biomol. Struct.
28
,
367
399
(
1999
).
23.
M. J.
Tyska
and
D. M.
Warshaw
, “
The myosin power stroke
,”
Cell Motil. Cytoskeleton
51
(
1
),
1
15
(
2002
).
24.
J. L.
England
, “
Allostery in protein domains reflects a balance of steric and hydrophobic effects
,”
Structure
19
(
7
),
967
975
(
2011
).
25.
R.
Elber
, “
Simulations of allosteric transitions
,”
Curr. Opin. Struct. Biol.
21
(
2
),
167
172
(
2011
).
26.
D.
Kern
and
E. R.
Zuiderweg
, “
The role of dynamics in allosteric regulation
,”
Curr. Opin. Struct. Biol.
13
(
6
),
748
757
(
2003
).
27.
C.-J.
Tsai
,
A.
del Sol
, and
R.
Nussinov
, “
Allostery: Absence of a change in shape does not imply that allostery is not at play
,”
J. Mol. Biol.
378
(
1
),
1
11
(
2008
).
28.
J.
Xie
and
L.
Lai
, “
Protein topology and allostery
,”
Curr. Opin. Struct. Biol.
62
,
158
165
(
2020
).
29.
G.
Kar
,
O.
Keskin
,
A.
Gursoy
, and
R.
Nussinov
, “
Allostery and population shift in drug discovery
,”
Curr. Opin. Pharmacol.
10
(
6
),
715
722
(
2010
).
30.
B.
Ma
,
M.
Shatsky
,
H. J.
Wolfson
, and
R.
Nussinov
, “
Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations
,”
Protein Sci.
11
(
2
),
184
197
(
2002
).
31.
Q.
Cui
and
M.
Karplus
, “
Allostery and cooperativity revisited
,”
Protein Sci.
17
(
8
),
1295
1307
(
2008
).
32.
H. N.
Motlagh
,
J. O.
Wrabl
,
J.
Li
, and
V. J.
Hilser
, “
The ensemble nature of allostery
,”
Nature
508
(
7496
),
331
339
(
2014
).
33.
R.
Nussinov
, “
Introduction to protein ensembles and allostery
,”
Chem. Rev.
116
(
11
),
6263
6266
(
2016
).
34.
S.-R.
Tzeng
and
C. G.
Kalodimos
, “
Allosteric inhibition through suppression of transient conformational states
,”
Nat. Chem. Biol.
9
(
7
),
462
465
(
2013
).
35.
T.
Saleh
,
P.
Rossi
, and
C. G.
Kalodimos
, “
Atomic view of the energy landscape in the allosteric regulation of Abl kinase
,”
Nat. Struct. Mol. Biol.
24
(
11
),
893
901
(
2017
).
36.
B.
Wright
,
K. A.
Watson
,
L. J.
McGuffin
,
J. A.
Lovegrove
, and
J. M.
Gibbins
, “
GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity
,”
J. Nutr. Biochem.
26
(
11
),
1156
1165
(
2015
).
37.
U.
Derewenda
,
M.
Artamonov
,
G.
Szukalska
,
D.
Utepbergenov
,
N.
Olekhnovich
,
H. I.
Parikh
,
G. E.
Kellogg
,
A. V.
Somlyo
, and
Z. S.
Derewenda
, “
Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): Structure of its complex with the N-terminal domain of RSK2 at 1.8 Å resolution
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
69
(
Pt 2
),
266
275
(
2013
).
38.
N.
Popovych
,
S.
Sun
,
R. H.
Ebright
, and
C. G.
Kalodimos
, “
Dynamically driven protein allostery
,”
Nat. Struct. Mol. Biol.
13
(
9
),
831
838
(
2006
).
39.
R.
Nussinov
and
C.-J.
Tsai
, “
Allostery without a conformational change? Revisiting the paradigm
,”
Curr. Opin. Struct. Biol.
30
,
17
24
(
2015
).
40.
T. P.
Schrank
,
D. W.
Bolen
, and
V. J.
Hilser
, “
Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
40
),
16984
16989
(
2009
).
41.
S. E.
Reichheld
,
Z.
Yu
, and
A. R.
Davidson
, “
The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
52
),
22263
22268
(
2009
).
42.
T.
Hol
,
M. B.
Cox
,
H. U.
Bryant
, and
M. W.
Draper
, “
Selective estrogen receptor modulators and postmenopausal women’s health
,”
J. Women’s Health
6
(
5
),
523
531
(
1997
).
43.
B. S.
Katzenellenbogen
,
M. M.
Montano
,
K.
Ekena
,
M. E.
Herman
, and
E. M.
McInerney
, “
William L. McGuire memorial lecture. Antiestrogens: Mechanisms of action and resistance in breast cancer
,”
Breast Cancer Res. Treat.
44
(
1
),
23
38
(
1997
).
44.
L. G.
Ahuja
,
S. S.
Taylor
, and
A. P.
Kornev
, “
Tuning the `violin' of protein kinases: The role of dynamics-based allostery
,”
IUBMB Life
71
(
6
),
685
696
(
2019
).
45.
A.
Cooper
and
D. T. F.
Dryden
, “
Allostery without conformational change. A plausible model
,”
Eur Biophys J
11
(
2
),
103
109
(
1984
).
46.
A. L.
Lee
,
S. A.
Kinnear
, and
A. J.
Wand
, “
Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex
,”
Nat. Struct. Biol.
7
(
1
),
72
77
(
2000
).
47.
A. P.
Kornev
, “
Self-organization, entropy and allostery
,”
Biochem. Soc. Trans.
46
(
3
),
587
597
(
2018
).
48.
I.
Bahar
,
T. R.
Lezon
,
L.-W.
Yang
, and
E.
Eyal
, “
Global dynamics of proteins: Bridging between structure and function
,”
Annu. Rev. Biophys.
39
,
23
42
(
2010
).
49.
L.
Zhang
,
S.
Bouguet-Bonnet
, and
M.
Buck
, “
Combining NMR and molecular dynamics studies for insights into the allostery of small GTPase-protein interactions
,”
Methods Mol. Biol.
796
,
235
259
(
2012
).
50.
K. W.
East
,
E.
Skeens
,
J. Y.
Cui
,
H. B.
Belato
,
B.
Mitchell
,
R.
Hsu
,
V. S.
Batista
,
G.
Palermo
, and
G. P.
Lisi
, “
NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes
,”
Biophys. Rev.
12
(
1
),
155
174
(
2020
).
51.
J.
Kim
,
L. G.
Ahuja
,
F. A.
Chao
,
Y.
Xia
,
C. L.
McClendon
,
A. P.
Kornev
,
S. S.
Taylor
, and
G.
Veglia
, “
A dynamic hydrophobic core orchestrates allostery in protein kinases
,”
Sci. Adv.
3
(
4
),
e1600663
(
2017
).
52.
C. M.
Petit
,
J.
Zhang
,
P. J.
Sapienza
,
E. J.
Fuentes
, and
A. L.
Lee
, “
Hidden dynamic allostery in a PDZ domain
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
43
),
18249
18254
(
2009
).
53.
L. G.
Ahuja
,
P. C.
Aoto
,
A. P.
Kornev
,
G.
Veglia
, and
S. S.
Taylor
, “
Dynamic allostery-based molecular workings of kinase:peptide complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
30
),
15052
15061
(
2019
).
54.
S. S.
Taylor
,
J.
Wu
,
J. G. H.
Bruystens
,
J. C.
Del Rio
,
T.-W.
Lu
,
A. P.
Kornev
, and
L. F.
Ten Eyck
, “
From structure to the dynamic regulation of a molecular switch: A journey over 3 decades
,”
J. Biol. Chem.
296
,
100746
(
2021
).
55.
C. L.
McClendon
,
A. P.
Kornev
,
M. K.
Gilson
, and
S. S.
Taylor
, “
Dynamic architecture of a protein kinase
,”
Proc. Natl. Acad. Sci. U. S. A
111
(
43
),
E4623
E4631
(
2014
).
56.
A. P.
Kornev
and
S. S.
Taylor
, “
Dynamics-driven allostery in protein kinases
,”
Trends Biochem. Sci.
40
(
11
),
628
647
(
2015
).
57.
A. P.
Kornev
,
P. C.
Aoto
, and
S. S.
Taylor
, “
Calculation of centralities in protein kinase A
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
47
),
e2215420119
(
2022
).
58.
M.
French
and
G.
Bissinger
, “
Testing of acoustic stringed musical instruments—An introduction
,”
Exp. Tech.
25
(
1
),
40
43
(
2001
).
59.
M.
Fleming
,
C. M.
Hutchins
, and
V.
Benade
, “
Research papers in violin acoustics 1975–1993
,”
Galpin Soc. J.
51
,
221
(
1998
).
60.
C.
Gough
, “
The violin: Chladni patterns, plates, shells and sounds
,”
Eur. Phys. J. Spec. Top.
145
(
1
),
77
101
(
2007
).
61.
J.
Woodhouse
, “
The physics of the violin
,”
Contemp. Phys.
27
,
61
62
(
1986
).
62.
C. E.
Gough
, “
A violin shell model: Vibrational modes and acoustics
,”
J. Acoust. Soc. Am.
137
(
3
),
1210
1225
(
2015
).
63.
M. M.
Tirion
, “
Large amplitude elastic motions in proteins from a single-parameter, atomic analysis
,”
Phys. Rev. Lett.
77
(
9
),
1905
1908
(
1996
).
64.
Y.
Togashi
and
H.
Flechsig
, “
Coarse-grained protein dynamics studies using elastic network models
,”
Int. J. Mol. Sci.
19
(
12
),
3899
(
2018
).
65.
A. R.
Atilgan
,
S. R.
Durell
,
R. L.
Jernigan
,
M. C.
Demirel
,
O.
Keskin
, and
I.
Bahar
, “
Anisotropy of fluctuation dynamics of proteins with an elastic network model
,”
Biophys. J.
80
(
1
),
505
515
(
2001
).
66.
I.
Dubanevics
and
T. C. B.
McLeish
, “
Optimising elastic network models for protein dynamics and allostery: Spatial and modal cut-offs and backbone stiffness
,”
J. Mol. Biol.
434
(
17
),
167696
(
2022
).
67.
F.
Radicchi
,
C.
Castellano
,
F.
Cecconi
,
V.
Loreto
, and
D.
Parisi
, “
Defining and identifying communities in networks
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
9
),
2658
2663
(
2004
).
68.
I.
Rivalta
and
V. S.
Batista
, “
Community network analysis of allosteric proteins
,”
Methods Mol. Biol.
2253
,
137
151
(
2021
).
69.
S.
Essiz
and
R. D.
Coalson
, “
A rigid-body Newtonian propagation scheme based on instantaneous decomposition into rotation and translation blocks
,”
J. Chem. Phys.
124
(
14
),
144116
(
2006
).
70.
I.
Bahar
,
A. R.
Atilgan
, and
B.
Erman
, “
Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential
,”
Folding Des.
2
(
3
),
173
181
(
1997
).
71.
K.
Hinsen
, “
Analysis of domain motions by approximate normal mode calculations
,”
Proteins
33
(
3
),
417
429
(
1998
).
72.
C.
Atilgan
,
Z. N.
Gerek
,
S. B.
Ozkan
, and
A. R.
Atilgan
, “
Manipulation of conformational change in proteins by single-residue perturbations
,”
Biophys. J.
99
(
3
),
933
943
(
2010
).
73.
V.
Alexandrov
,
U.
Lehnert
,
N.
Echols
,
D.
Milburn
,
D.
Engelman
, and
M.
Gerstein
, “
Normal modes for predicting protein motions: A comprehensive database assessment and associated web tool
,”
Protein Sci.
14
(
3
),
633
643
(
2005
).
74.
N.
Go
,
T.
Noguti
, and
T.
Nishikawa
, “
Dynamics of a small globular protein in terms of low-frequency vibrational modes
,”
Proc. Natl. Acad. Sci. U. S. A.
80
(
12
),
3696
3700
(
1983
).
75.
B.
Brooks
and
M.
Karplus
, “
Normal modes for specific motions of macromolecules: Application to the hinge-bending mode of lysozyme
,”
Proc. Natl. Acad. Sci. U. S. A.
82
(
15
),
4995
4999
(
1985
).
76.
A.
Kitao
,
F.
Hirata
, and
N.
, “
The effects of solvent on the conformation and the collective motions of protein: Normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum
,”
Chem. Phys.
158
(
2–3
),
447
472
(
1991
).
77.
P.
Doruker
,
A. R.
Atilgan
, and
I.
Bahar
, “
Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to alpha-amylase inhibitor
,”
Proteins
40
(
3
),
512
524
(
2000
).
78.
W.
Zheng
,
B.
Brooks
, and
D.
Thirumalai
, “
Allosteric transitions in biological nanomachines are described by robust normal modes of elastic networks
,”
Curr. Protein Pept. Sci.
10
(
2
),
128
132
(
2009
).
79.
H.
Flechsig
and
Y.
Togashi
, “
Designed elastic networks: Models of complex protein machinery
,”
Int. J. Mol. Sci.
19
(
10
),
3152
(
2018
).
80.
D.
Ming
and
M. E.
Wall
, “
Quantifying allosteric effects in proteins
,”
Proteins
59
(
4
),
697
707
(
2005
).
81.
C.
Atilgan
and
A. R.
Atilgan
, “
Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein
,”
PLoS Comput. Biol.
5
(
10
),
e1000544
(
2009
).
82.
B.
Erman
, “
A fast approximate method of identifying paths of allosteric communication in proteins
,”
Proteins
81
(
7
),
1097
1101
(
2013
).
83.
P.
Guzel
and
O.
Kurkcuoglu
, “
Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models
,”
Biochim. Biophys. Acta, Gen. Subj.
1861
(
12
),
3131
3141
(
2017
).
84.
J. G.
Su
,
L. S.
Qi
,
C. H.
Li
,
Y. Y.
Zhu
,
H. J.
Du
,
Y. X.
Hou
,
R.
Hao
, and
J. H.
Wang
, “
Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method
,”
Phys. Rev. E
90
(
2
),
022719
(
2014
).
85.
X.-Q.
Yao
,
L.
Skjærven
, and
B. J.
Grant
, “
Rapid characterization of allosteric networks with ensemble normal mode analysis
,”
J. Phys. Chem. B
120
(
33
),
8276
8288
(
2016
).
86.
M.
Tekpinar
and
A.
Yildirim
, “
Only a subset of normal modes is sufficient to identify linear correlations in proteins
,”
J. Chem. Inf. Model.
58
(
9
),
1947
1961
(
2018
).
87.
F. R.
Chung
,
Spectral Graph Theory
(
American Mathematical Society
,
1997
), Vol. 92.
88.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U. S. A.
99
(
12
),
7821
7826
(
2002
).
89.
R. A.
Estabrook
,
J.
Luo
,
M. M.
Purdy
,
V.
Sharma
,
P.
Weakliem
,
T. C.
Bruice
, and
N. O.
Reich
, “
Statistical coevolution analysis and molecular dynamics: Identification of amino acid pairs essential for catalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
4
),
994
999
(
2005
).
90.
C. L.
McClendon
,
G.
Friedland
,
D. L.
Mobley
,
H.
Amirkhani
, and
M. P.
Jacobson
, “
Quantifying correlations between allosteric sites in thermodynamic ensembles
,”
J. Chem. Theory Comput.
5
(
9
),
2486
2502
(
2009
).
91.
T.
Ichiye
and
M.
Karplus
, “
Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations
,”
Proteins
11
(
3
),
205
217
(
1991
).
92.
A.
Sethi
,
J.
Eargle
,
A. A.
Black
, and
Z.
Luthey-Schulten
, “
Dynamical networks in tRNA:protein complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
16
),
6620
6625
(
2009
).
93.
B. J.
Killian
,
J.
Yundenfreund Kravitz
, and
M. K.
Gilson
, “
Extraction of configurational entropy from molecular simulations via an expansion approximation
,”
J. Chem. Phys.
127
(
2
),
024107
(
2007
).
94.
T. M.
Cover
,
Elements of Information Theory
(
John Wiley and Sons
,
1999
).
95.
M. M.
Lin
, “
Timing correlations in proteins predict functional modules and dynamic allostery
,”
J. Am. Chem. Soc.
138
(
15
),
5036
5043
(
2016
).
96.
O. F.
Lange
and
H.
Grubmüller
, “
Generalized correlation for biomolecular dynamics
,”
Proteins
62
(
4
),
1053
1061
(
2006
).
97.
A. R.
Atilgan
,
P.
Akan
, and
C.
Baysal
, “
Small-world communication of residues and significance for protein dynamics
,”
Biophys. J.
86
(
1
),
85
91
(
2004
).
98.
F.
Chung
,
L.
Lu
, and
V.
Vu
, “
Spectra of random graphs with given expected degrees
,”
Proc. Natl. Acad. Sci. U. S. A.
100
(
11
),
6313
6318
(
2003
).
99.
M. E.
Newman
and
M.
Girvan
, “
Finding and evaluating community structure in networks
,”
Phys. Rev. E
69
(
2 Pt 2
),
026113
(
2004
).
100.
M. E. J.
Newman
, “
Modularity and community structure in networks
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
23
),
8577
8582
(
2006
).
101.
A.
del Sol
,
H.
Fujihashi
,
D.
Amoros
, and
R.
Nussinov
, “
Residue centrality, functionally important residues, and active site shape: Analysis of enzyme and non-enzyme families
,”
Protein Sci.
15
(
9
),
2120
2128
(
2006
).
102.
O.
Sheik Amamuddy
,
R.
Afriyie Boateng
,
V.
Barozi
,
D.
Wavinya Nyamai
, and
Ö.
Tastan Bishop
, “
Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 Mpro and its evolutionary mutations as a case study
,”
Comput. Struct. Biotechnol. J.
19
,
6431
6455
(
2021
).
103.
L.
Metcalf
and
W.
Casey
, “
Graph theory
,” in
Cybersecurity and Applied Mathematics
, edited by
L.
Metcalf
and
W.
Casey
(
Syngress
,
Boston
,
2016
), Chap. 5, pp.
67
94
.
104.
P. V.
Marsden
, “
Network analysis
,” in
Encyclopedia of Social Measurement
, edited by
K.
Kempf-Leonard
(
Elsevier
,
New York
,
2005
), pp.
819
825
.
105.
R. W.
Floyd
, “
Algorithm 97: Shortest path
,”
Commun. ACM
5
,
345
(
1962
).
106.
D.
Foutch
,
B.
Pham
, and
T.
Shen
, “
Protein conformational switch discerned via network centrality properties
,”
Comput. Struct. Biotechnol. J.
19
,
3599
3608
(
2021
).
107.
D.
Mistry
,
R. P.
Wise
, and
J. A.
Dickerson
, “
DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network
,”
PLoS One
12
(
11
),
e0187091
(
2017
).
108.
C. F. A.
Negre
,
U. N.
Morzan
,
H. P.
Hendrickson
,
R.
Pal
,
G. P.
Lisi
,
J. P.
Loria
,
I.
Rivalta
,
J.
Ho
, and
V. S.
Batista
, “
Eigenvector centrality for characterization of protein allosteric pathways
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
52
),
E12201
E12208
(
2018
).
109.
D. A.
Walsh
,
J. P.
Perkins
, and
E. G.
Krebs
, “
An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle
,”
J. Biol. Chem.
243
(
13
),
3763
3765
(
1968
).
110.
S. S.
Taylor
,
R.
Ilouz
,
P.
Zhang
, and
A. P.
Kornev
, “
Assembly of allosteric macromolecular switches: Lessons from PKA
,”
Nat. Rev. Mol. Cell Biol.
13
(
10
),
646
658
(
2012
).
111.
K. M.
Boeshans
,
K. A.
Resing
,
J. B.
Hunt
,
N. G.
Ahn
, and
J. B.
Shabb
, “
Structural characterization of the membrane-associated regulatory subunit of type I cAMP-dependent protein kinase by mass spectrometry: Identification of Ser81 as the in vivo phosphorylation site of RIalpha
,”
Protein Sci.
8
(
7
),
1515
1522
(
1999
).
112.
J. B.
Shabb
, “
Physiological substrates of cAMP-dependent protein kinase
,”
Chem. Rev.
101
(
8
),
2381
2411
(
2001
).
113.
L. W.
Slice
and
S. S.
Taylor
, “
Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli
,”
J. Biol. Chem.
264
(
35
),
20940
20946
(
1989
).
114.
D. R.
Knighton
,
J. H.
Zheng
,
L. F.
Ten Eyck
,
V. A.
Ashford
,
N. H.
Xuong
,
S. S.
Taylor
, and
J. M.
Sowadski
, “
Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
,”
Science
253
(
5018
),
407
414
(
1991
).
115.
D. R.
Knighton
,
J. H.
Zheng
,
L. F.
Ten Eyck
,
N. H.
Xuong
,
S. S.
Taylor
, and
J. M.
Sowadski
, “
Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
,”
Science
253
(
5018
),
414
420
(
1991
).
116.
R. T.
Aimes
,
W.
Hemmer
, and
S. S.
Taylor
, “
Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: Role in catalysis, P-site specificity, and interaction with inhibitors
,”
Biochemistry
39
(
28
),
8325
8332
(
2000
).
117.
G. H.
Iyer
,
S.
Garrod
,
V. L.
Woods
, Jr.
, and
S. S.
Taylor
, “
Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: Study of the Lys72His mutant of cAMP-dependent kinase
,”
J. Mol. Biol.
351
(
5
),
1110
1122
(
2005
).
118.
H. S.
Meharena
,
X.
Fan
,
L. G.
Ahuja
,
M. M.
Keshwani
,
C. L.
McClendon
,
A. M.
Chen
,
J. A.
Adams
, and
S. S.
Taylor
, “
Decoding the interactions regulating the active state mechanics of eukaryotic protein kinases
,”
PLoS Biol.
14
(
11
),
e2000127
(
2016
).
119.
A. C.
Bastidas
,
M. S.
Deal
,
J. M.
Steichen
,
Y.
Guo
,
J.
Wu
, and
S. S.
Taylor
, “
Phosphoryl transfer by protein kinase A is captured in a crystal lattice
,”
J. Am. Chem. Soc.
135
(
12
),
4788
4798
(
2013
).
120.
I. V.
Khavrutskii
,
B.
Grant
,
S. S.
Taylor
, and
J. A.
McCammon
, “
A transition path ensemble study reveals a linchpin role for Mg2+ during rate-limiting ADP release from protein kinase A
,”
Biochemistry
48
(
48
),
11532
11545
(
2009
).
121.
Z. Q.
Bao
,
D. M.
Jacobsen
, and
M. A.
Young
, “
Briefly bound to activate: Transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis
,”
Structure
19
(
5
),
675
690
(
2011
).
122.
J. M.
Steichen
,
G. H.
Iyer
,
S.
Li
,
S. A.
Saldanha
,
M. S.
Deal
,
V. L.
Woods
, Jr.
, and
S. S.
Taylor
, “
Global consequences of activation loop phosphorylation on protein kinase A
,”
J. Biol. Chem.
285
(
6
),
3825
3832
(
2010
).
123.
A. C.
Bastidas
,
J.
Wu
, and
S. S.
Taylor
, “
Molecular features of product release for the PKA catalytic cycle
,”
Biochemistry
54
(
1
),
2
10
(
2015
).
124.
G.
Veglia
and
A.
Cembran
, “
Role of conformational entropy in the activity and regulation of the catalytic subunit of protein kinase A
,”
FEBS J.
280
(
22
),
5608
5615
(
2013
).
125.
L. R.
Masterson
,
A.
Mascioni
,
N. J.
Traaseth
,
S. S.
Taylor
, and
G.
Veglia
, “
Allosteric cooperativity in protein kinase A
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
2
),
506
511
(
2008
).
126.
S. S.
Taylor
,
J.
Yang
,
J.
Wu
,
N. M.
Haste
,
E.
Radzio-Andzelm
, and
G.
Anand
, “
PKA: A portrait of protein kinase dynamics
,”
Biochim. Biophys. Acta
1697
(
1–2
),
259
269
(
2004
).
127.
D. A.
Johnson
,
P.
Akamine
,
E.
Radzio-Andzelm
,
M.
Madhusudan
, and
S. S.
Taylor
, “
Dynamics of cAMP-dependent protein kinase
,”
Chem. Rev.
101
(
8
),
2243
2270
(
2001
).
128.
J. A.
Adams
, “
Kinetic and catalytic mechanisms of protein kinases
,”
Chem. Rev.
101
(
8
),
2271
2290
(
2001
).
129.
A. P.
Kornev
,
S. S.
Taylor
, and
L. F.
Ten Eyck
, “
A helix scaffold for the assembly of active protein kinases
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
38
),
14377
(
2008
).
130.
A. P.
Kornev
,
N. M.
Haste
,
S. S.
Taylor
, and
L. F.
Ten Eyck
, “
Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
47
),
17783
(
2006
).
131.
J.
Hu
,
L. G.
Ahuja
,
H. S.
Meharena
,
N.
Kannan
,
A. P.
Kornev
,
S. S.
Taylor
, and
A. S.
Shaw
, “
Kinase regulation by hydrophobic spine assembly in cancer
,”
Mol. Cell. Biol.
35
(
1
),
264
276
(
2015
).
132.
K.
Henzler-Wildman
and
D.
Kern
, “
Dynamic personalities of proteins
,”
Nature
450
(
7172
),
964
972
(
2007
).
133.
G. P.
Miller
and
S. J.
Benkovic
, “
Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase
,”
Biochemistry
37
(
18
),
6327
6335
(
1998
).
134.
E.
Neria
and
M.
Kuplus
, “
Molecular dynamics of an enzyme reaction: Proton transfer in TIM
,”
Chem. Phys. Lett.
267
(
1
),
23
30
(
1997
).
135.
N.
Chopra
,
T. E.
Wales
,
R. E.
Joseph
,
S. E.
Boyken
,
J. R.
Engen
,
R. L.
Jernigan
, and
A. H.
Andreotti
, “
Dynamic allostery mediated by a conserved tryptophan in the tec family kinases
,”
PLoS Comput. Biol.
12
(
3
),
e1004826
(
2016
).
136.
A.
Ostermann
,
R.
Waschipky
,
F. G.
Parak
, and
G. U.
Nienhaus
, “
Ligand binding and conformational motions in myoglobin
,”
Nature
404
(
6774
),
205
208
(
2000
).
137.
Q.
Zhao
, “
Dynamic model for enzyme action
,”
Protein Pept. Lett.
18
(
1
),
92
99
(
2011
).
138.
B.
Lu
,
C. F.
Wong
, and
J. A.
McCammon
, “
Release of ADP from the catalytic subunit of protein kinase A: A molecular dynamics simulation study
,”
Protein Sci.
14
(
1
),
159
168
(
2005
).
139.
X.
Cheng
,
C.
Phelps
, and
S. S.
Taylor
, “
Differential binding of cAMP-dependent protein kinase regulatory subunit isoforms Iα and IIβ to the catalytic subunit
,”
J. Biol. Chem.
276
(
6
),
4102
4108
(
2001
).
140.
M. J.
Moore
,
J. R.
Kanter
,
K. C.
Jones
, and
S. S.
Taylor
, “
Phosphorylation of the catalytic subunit of protein kinase A. Autophosphorylation versus phosphorylation by phosphoinositide-dependent kinase-1
,”
J. Biol. Chem.
277
(
49
),
47878
47884
(
2002
).
141.
J.
Yang
,
L. F.
Ten Eyck
,
N.-H.
Xuong
, and
S. S.
Taylor
, “
Crystal structure of a cAMP-dependent protein kinase mutant at 1.26A: New insights into the catalytic mechanism
,”
J. Mol. Biol.
336
(
2
),
473
487
(
2004
).
You do not currently have access to this content.