We investigate the thermal gelation of egg white proteins at different temperatures with varying salt concentrations using x-ray photon correlation spectroscopy in the geometry of ultra-small angle x-ray scattering. Temperature-dependent structural investigation suggests a faster network formation with increasing temperature, and the gel adopts a more compact network, which is inconsistent with the conventional understanding of thermal aggregation. The resulting gel network shows a fractal dimension δ, ranging from 1.5 to 2.2. The values of δ display a non-monotonic behavior with increasing amount of salt. The corresponding dynamics in the q range of 0.002–0.1 nm−1 is observable after major change of the gel structure. The extracted relaxation time exhibits a two-step power law growth in dynamics as a function of waiting time. In the first regime, the dynamics is associated with structural growth, whereas the second regime is associated with the aging of the gel, which is directly linked with its compactness, as quantified by the fractal dimension. The gel dynamics is characterized by a compressed exponential relaxation with a ballistic-type of motion. The addition of salt gradually makes the early stage dynamics faster. Both gelation kinetics and microscopic dynamics show that the activation energy barrier in the system systematically decreases with increasing salt concentration.

1.
C.
Schmitt
,
C.
Moitzi
,
C.
Bovay
,
M.
Rouvet
,
L.
Bovetto
,
L.
Donato
,
M. E.
Leser
,
P.
Schurtenberger
, and
A.
Stradner
, “
Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment
,”
Soft Matter
6
,
4876
4884
(
2010
).
2.
V.
Raikos
,
L.
Campbell
, and
S. R.
Euston
, “
Rheology and texture of hen’s egg protein heat-set gels as affected by pH and the addition of sugar and/or salt
,”
Food Hydrocolloids
21
,
237
244
(
2007
).
3.
A.
Handa
,
K.
Takahashi
,
N.
Kuroda
, and
G. W.
Froning
, “
Heat-induced egg white gels as affected by pH
,”
J. Food Sci.
63
,
403
407
(
1998
).
4.
J.
Li
,
Y.
Zhang
,
Q.
Fan
,
C.
Teng
,
W.
Xie
,
Y.
Shi
,
Y.
Su
, and
Y.
Yang
, “
Combination effects of NaOH and NaCl on the rheology and gel characteristics of hen egg white proteins
,”
Food Chem.
250
,
1
6
(
2018
).
5.
N.
Zhao
,
N. L.
Francis
,
H. R.
Calvelli
, and
P. V.
Moghe
, “
Microglia-targeting nanotherapeutics for neurodegenerative diseases
,”
APL Bioeng.
4
,
030902
(
2020
).
6.
G. F.
Paciotti
,
L.
Myer
,
D.
Weinreich
,
D.
Goia
,
N.
Pavel
,
R. E.
McLaughlin
, and
L.
Tamarkin
, “
Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery
,”
Drug Delivery
11
,
169
183
(
2004
).
7.
J. E.
Straub
and
D.
Thirumalai
, “
Toward a molecular theory of early and late events in monomer to amyloid fibril formation
,”
Annu. Rev. Phys. Chem.
62
,
437
463
(
2011
).
8.
Y.
Mine
,
T.
Noutomi
, and
N.
Haga
, “
Thermally induced changes in egg white proteins
,”
J. Agric. Food Chem.
38
,
2122
2125
(
1990
).
9.
K.
Iwashita
,
N.
Inoue
,
A.
Handa
, and
K.
Shiraki
, “
Thermal aggregation of hen egg white proteins in the presence of salts
,”
Protein J.
34
,
212
219
(
2015
).
10.
J. C.
Bischof
and
X.
He
, “
Thermal stability of proteins
,”
Ann. N. Y. Acad. Sci.
1066
,
12
33
(
2006
).
11.
M. M.
Ould Eleya
,
S.
Ko
, and
S.
Gunasekaran
, “
Scaling and fractal analysis of viscoelastic properties of heat-induced protein gels
,”
Food Hydrocolloids
18
,
315
323
(
2004
).
12.
E.
Zaccarelli
,
P. J.
Lu
,
F.
Ciulla
,
D. A.
Weitz
, and
F.
Sciortino
, “
Gelation as arrested phase separation in short-ranged attractive colloid–polymer mixtures
,”
J. Phys.: Condens. Matter
20
,
494242
(
2008
).
13.
D.
Spagnoli
,
J. F.
Banfield
, and
S. C.
Parker
, “
Free energy change of aggregation of nanoparticles
,”
J. Phys. Chem. C
112
,
14731
14736
(
2008
).
14.
D.-H.
Tsai
,
L. F.
Pease
 III
,
R. A.
Zangmeister
,
M. J.
Tarlov
, and
M. R.
Zachariah
, “
Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis
,”
Langmuir
25
,
140
146
(
2009
).
15.
X.
Gao
,
Q.
Kou
,
K.
Ren
,
Y.
Zuo
,
Y.
Xu
,
Y.
Zhang
,
R.
Lal
, and
J.
Wang
, “
Quantitative characterization of non-DLVO factors in the aggregation of black soil colloids
,”
Sci. Rep.
12
,
5064
(
2022
).
16.
S.
Lu
,
Y.
Ding
, and
J.
Guo
, “
Kinetics of fine particle aggregation in turbulence
,”
Adv. Colloid Interface Sci.
78
,
197
235
(
1998
).
17.
E.
Martin
,
M.
Prostredny
,
A.
Fletcher
, and
P.
Mulheran
, “
Modelling organic gel growth in three dimensions: Textural and fractal properties of resorcinol–formaldehyde gels
,”
Gels
6
,
23
(
2020
).
18.
L.
Campbell
,
V.
Raikos
, and
S. R.
Euston
, “
Modification of functional properties of egg-white proteins
,”
Food/Nahrung
47
,
369
376
(
2003
).
19.
A.
Fluerasu
,
A.
Moussaïd
,
A.
Madsen
, and
A.
Schofield
, “
Slow dynamics and aging in colloidal gels studied by X-ray photon correlation spectroscopy
,”
Phys. Rev. E
76
,
010401
(
2007
).
20.
E.
Lattuada
,
D.
Caprara
,
R.
Piazza
, and
F.
Sciortino
, “
Spatially uniform dynamics in equilibrium colloidal gels
,”
Sci. Adv.
7
,
eabk2360
(
2021
).
21.
N.
Şenbil
,
M.
Gruber
,
C.
Zhang
,
M.
Fuchs
, and
F.
Scheffold
, “
Observation of strongly heterogeneous dynamics at the depinning transition in a colloidal glass
,”
Phys. Rev. Lett.
122
,
108002
(
2019
).
22.
B.
Doliwa
and
A.
Heuer
, “
What does the potential energy landscape tell us about the dynamics of supercooled liquids and glasses?
,”
Phys. Rev. Lett.
91
,
235501
(
2003
).
23.
A.
Heuer
, “
Exploring the potential energy landscape of glass-forming systems: From inherent structures via metabasins to macroscopic transport
,”
J. Phys.: Condens. Matter
20
,
373101
(
2008
).
24.
M.
Hennig
,
F.
Roosen-Runge
,
F.
Zhang
,
S.
Zorn
,
M. W. A.
Skoda
,
R. M. J.
Jacobs
,
T.
Seydel
, and
F.
Schreiber
, “
Dynamics of highly concentrated protein solutions around the denaturing transition
,”
Soft Matter
8
,
1628
1633
(
2012
).
25.
O.
Matsarskaia
,
L.
Bühl
,
C.
Beck
,
M.
Grimaldo
,
R.
Schweins
,
F.
Zhang
,
T.
Seydel
,
F.
Schreiber
, and
F.
Roosen-Runge
, “
Evolution of the structure and dynamics of bovine serum albumin induced by thermal denaturation
,”
Phys. Chem. Chem. Phys.
22
,
18507
18517
(
2020
).
26.
T.
Nagano
,
H.
Mori
, and
K.
Nishinari
, “
Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans
,”
J. Agric. Food Chem.
42
,
1415
1419
(
1994
).
27.
F.
Massi
,
J. W.
Peng
,
J. P.
Lee
, and
J. E.
Straub
, “
Simulation study of the structure and dynamics of the alzheimer’s amyloid peptide congener in solution
,”
Biophys. J.
80
,
31
44
(
2001
).
28.
M.
Moron
,
A.
Al-Masoodi
,
C.
Lovato
,
M.
Reiser
,
L.
Randolph
,
G.
Surmeier
,
J.
Bolle
,
F.
Westermeier
,
M.
Sprung
,
R.
Winter
 et al, “
Gelation dynamics upon pressure-induced liquid–liquid phase separation in a water–lysozyme solution
,”
J. Phys. Chem. B
126
,
4160
4167
(
2022
).
29.
M.
Grimaldo
,
F.
Roosen-Runge
,
F.
Zhang
,
F.
Schreiber
, and
T.
Seydel
, “
Dynamics of proteins in solution
,”
Q. Rev. Biophys.
52
,
E7
(
2019
).
30.
N.
Begam
,
A.
Ragulskaya
,
A.
Girelli
,
H.
Rahmann
,
S.
Chandran
,
F.
Westermeier
,
M.
Reiser
,
M.
Sprung
,
F.
Zhang
,
C.
Gutt
, and
F.
Schreiber
, “
Kinetics of network formation and heterogeneous dynamics of an egg white gel revealed by coherent X-ray scattering
,”
Phys. Rev. Lett.
126
,
098001
(
2021
).
31.
N.
Koshoubu
,
H.
Kanaya
,
K.
Hara
,
S.
Taki
,
E.
Takushi
, and
K.
Matsushige
, “
Variations of mechanical properties in egg white during gel-to-glasslike transition
,”
Jpn. J. Appl. Phys.
32
,
4038
(
1993
).
32.
E. D. N. S.
Abeyrathne
,
H. Y.
Lee
, and
D. U.
Ahn
, “
Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents review
,”
Poult. Sci.
92
,
3292
3299
(
2013
).
33.
T.
Croguennec
,
F.
Nau
, and
G.
Brule
, “
Influence of pH and salts on egg white gelation
,”
J. Food Sci.
67
,
608
614
(
2002
).
34.
G.
Grübel
and
F.
Zontone
, “
Correlation spectroscopy with coherent X-rays
,”
J. Alloys Compd.
362
,
3
11
(
2004
).
35.
R. L.
Leheny
,
M. C.
Rogers
,
K.
Chen
,
S.
Narayanan
, and
J. L.
Harden
, “
Rheo-XPCS
,”
Curr. Opin. Colloid Interface Sci.
20
,
261
271
(
2015
).
36.
J.
Möller
,
M.
Reiser
,
J.
Hallmann
,
U.
Boesenberg
,
A.
Zozulya
,
H.
Rahmann
,
A.-L.
Becker
,
F.
Westermeier
,
T.
Zinn
,
M.
Sprung
 et al, “
Using low dose x-ray speckle visibility spectroscopy to study dynamics of soft matter samples
,”
New J. Phys.
23
,
093041
(
2021
).
37.
J.
Möller
,
M.
Sprung
,
A.
Madsen
, and
C.
Gutt
, “
X-ray photon correlation spectroscopy of protein dynamics at nearly diffraction-limited storage rings
,”
IUCrJ
6
,
794
803
(
2019
).
38.
A.
Girelli
,
H.
Rahmann
,
N.
Begam
,
A.
Ragulskaya
,
M.
Reiser
,
S.
Chandran
,
F.
Westermeier
,
M.
Sprung
,
F.
Zhang
,
C.
Gutt
, and
F.
Schreiber
, “
Microscopic dynamics of liquid-liquid phase separation and domain coarsening in a protein solution revealed by X-ray photon correlation spectroscopy
,”
Phys. Rev. Lett.
126
,
138004
(
2021
).
39.
A.
Ragulskaya
,
N.
Begam
,
A.
Girelli
,
H.
Rahmann
,
M.
Reiser
,
F.
Westermeier
,
M.
Sprung
,
F.
Zhang
,
C.
Gutt
, and
F.
Schreiber
, “
Interplay between kinetics and dynamics of liquid–liquid phase separation in a protein solution revealed by coherent X-ray spectroscopy
,”
J. Phys. Chem. Lett.
12
,
7085
7090
(
2021
).
40.
M.
Reiser
,
A.
Girelli
,
A.
Ragulskaya
,
S.
Das
,
S.
Berkowicz
,
M.
Bin
,
M.
Ladd-Parada
,
M.
Filianina
,
H.-F.
Poggemann
,
N.
Begam
 et al, “
Resolving molecular diffusion and aggregation of antibody proteins with megahertz x-ray free-electron laser pulses
,”
Nat. Commun.
13
,
5528
(
2022
).
41.
J.
Song
,
Q.
Zhang
,
F.
de Quesada
,
M. H.
Rizvi
,
J. B.
Tracy
,
J.
Ilavsky
,
S.
Narayanan
,
E.
Del Gado
,
R. L.
Leheny
,
N.
Holten-Andersen
, and
G. H.
McKinley
, “
Microscopic dynamics underlying the stress relaxation of arrested soft materials
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2201566119
(
2022
).
42.
P.
Vodnala
,
N.
Karunaratne
,
S.
Bera
,
L.
Lurio
,
G. M.
Thurston
,
N.
Karonis
,
J.
Winans
,
A.
Sandy
,
S.
Narayanan
,
L.
Yasui
 et al, “
Radiation damage limits to XPCS studies of protein dynamics
,”
AIP Conf. Proc.
1741
,
050026
(
2016
).
43.
L. B.
Lurio
,
G. M.
Thurston
,
Q.
Zhang
,
S.
Narayanan
, and
E. M.
Dufresne
, “
Use of continuous sample translation to reduce radiation damage for XPCS studies of protein diffusion
,”
J. Synchrotron Radiat.
28
,
490
498
(
2021
).
44.
S.
Kuwamoto
,
S.
Akiyama
, and
T.
Fujisawa
, “
Radiation damage to a protein solution, detected by synchrotron x-ray small-angle scattering: Dose-related considerations and suppression by cryoprotectants
,”
J. Synchrotron Radiat.
11
,
462
468
(
2004
).
45.
S. K.
Sinha
,
Z.
Jiang
, and
L. B.
Lurio
, “
X-ray photon correlation spectroscopy studies of surfaces and thin films
,”
Adv. Mater.
26
,
7764
7785
(
2014
).
46.
Y.
Chushkin
,
A.
Gulotta
,
F.
Roosen-Runge
,
A.
Pal
,
A.
Stradner
, and
P.
Schurtenberger
, “
Probing cage relaxation in concentrated protein solutions by x-ray photon correlation spectroscopy
,”
Phys. Rev. Lett.
129
,
238001
(
2022
).
47.
A.
Halabi
,
A.
Deglaire
,
P.
Hamon
,
S.
Bouhallab
,
D.
Dupont
, and
T.
Croguennec
, “
Kinetics of heat-induced denaturation of proteins in model infant milk formulas as a function of whey protein composition
,”
Food Chem.
302
,
125296
(
2020
).
48.
S.
Da Vela
,
N.
Begam
,
D.
Dyachok
,
R. S.
Schäufele
,
O.
Matsarskaia
,
M. K.
Braun
,
A.
Girelli
,
A.
Ragulskaya
,
A.
Mariani
,
F.
Zhang
, and
F.
Schreiber
, “
Interplay between glass formation and liquid–liquid phase separation revealed by the scattering invariant
,”
J. Phys. Chem. Lett.
11
,
7273
7278
(
2020
).
49.
F.
Zhang
,
D. G.
Dressen
,
M. W. A.
Skoda
,
R. M. J.
Jacobs
,
S.
Zorn
,
R. A.
Martin
,
C. M.
Martin
,
G. F.
Clark
, and
F.
Schreiber
, “
Gold nanoparticles decorated with oligo (ethylene glycol) thiols: Kinetics of colloid aggregation driven by depletion forces
,”
Eur. Biophys. J.
37
,
551
561
(
2008
).
50.
S.
Hayakawa
and
R.
Nakamura
, “
Optimization approaches to thermally induced egg white lysozyme gel
,”
Agric. Biol. Chem.
50
,
2039
2046
(
1986
).
51.
S.
Ikeda
,
E. A.
Foegeding
, and
T.
Hagiwara
, “
Rheological study on the fractal nature of the protein gel structure
,”
Langmuir
15
,
8584
8589
(
1999
).
52.
M. A.
Da Silva
and
E. P. G.
Arêas
, “
Solvent-induced lysozyme gels: Rheology, fractal analysis, and sol–gel kinetics
,”
J. Colloid Interface Sci.
289
,
394
401
(
2005
).
53.
D. A.
Weitz
,
J. S.
Huang
,
M. Y.
Lin
, and
J.
Sung
, “
Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids
,”
Phys. Rev. Lett.
54
,
1416
(
1985
).
54.
W.
Li
,
B. A.
Persson
,
M.
Morin
,
M. A.
Behrens
,
M.
Lund
, and
M.
Zackrisson Oskolkova
, “
Charge-induced patchy attractions between proteins
,”
J. Phys. Chem. B
119
,
503
508
(
2015
).
55.
Q.
Li
,
Y.
Tang
,
X.
He
, and
H.
Li
, “
Approach to theoretical estimation of the activation energy of particle aggregation taking ionic nonclassic polarization into account
,”
AIP Adv.
5
,
107218
(
2015
).
56.
Y.
Yang
,
A. J.
Welch
, and
H. G.
Rylander
 III
, “
Rate process parameters of albumen
,”
Lasers Surg. Med.
11
,
188
190
(
1991
).
57.
D.
Johansen
,
J.
Trewhella
, and
D. P.
Goldenberg
, “
Fractal dimension of an intrinsically disordered protein: Small-angle X-ray scattering and computational study of the bacteriophage λ N protein
,”
Protein Sci.
20
,
1955
1970
(
2011
).
58.
S.
Jungblut
,
J.-O.
Joswig
, and
A.
Eychmüller
, “
Diffusion-and reaction-limited cluster aggregation revisited
,”
Phys. Chem. Chem. Phys.
21
,
5723
5729
(
2019
).
59.
R.
Vreeker
,
L. L.
Hoekstra
,
D. C.
Den Boer
, and
W. G. M.
Agterof
, “
Fractal aggregation of whey proteins
,”
Food Hydrocolloids
6
,
423
435
(
1992
).
60.
P. W.
Gossett
,
S. S. H.
Rizvi
, and
R. C.
Baker
, “
A new method to quantitate the coagulation process
,”
J. Food Sci.
48
,
1400
1404
(
1983
).
61.
Z.
Meng
,
S. M.
Hashmi
, and
M.
Elimelech
, “
Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement
,”
J. Colloid Interface Sci.
392
,
27
33
(
2013
).
62.
G.
Brown
,
P. A.
Rikvold
,
M.
Sutton
, and
M.
Grant
, “
Speckle from phase-ordering systems
,”
Phys. Rev. E
56
,
6601
(
1997
).
63.
O.
Bikondoa
, “
On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis
,”
J. Appl. Crystallogr.
50
,
357
368
(
2017
).
64.
A.
Madsen
,
R. L.
Leheny
,
H.
Guo
,
M.
Sprung
, and
O.
Czakkel
, “
Beyond simple exponential correlation functions and equilibrium dynamics in X-ray photon correlation spectroscopy
,”
New J. Phys.
12
,
055001
(
2010
).
65.
Z.
Evenson
,
B.
Ruta
,
S.
Hechler
,
M.
Stolpe
,
E.
Pineda
,
I.
Gallino
, and
R.
Busch
, “
X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass
,”
Phys. Rev. Lett.
115
,
175701
(
2015
).
66.
E.
Del Gado
,
A.
Fierro
,
L.
de Arcangelis
, and
A.
Coniglio
, “
Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses
,”
Phys. Rev. E
69
,
051103
(
2004
).
67.
D.
Orsi
,
B.
Ruta
,
Y.
Chushkin
,
A.
Pucci
,
G.
Ruggeri
,
G.
Baldi
,
T.
Rimoldi
, and
L.
Cristofolini
, “
Controlling the dynamics of a bidimensional gel above and below its percolation transition
,”
Phys. Rev. E
89
,
042308
(
2014
).
68.
A.
Nogales
and
A.
Fluerasu
, “
X ray photon correlation spectroscopy for the study of polymer dynamics
,”
Eur. Polym. J.
81
,
494
504
(
2016
).
69.
B.
Chung
,
S.
Ramakrishnan
,
R.
Bandyopadhyay
,
D.
Liang
,
C. F.
Zukoski
,
J. L.
Harden
, and
R. L.
Leheny
, “
Microscopic dynamics of recovery in sheared depletion gels
,”
Phys. Rev. Lett.
96
,
228301
(
2006
).
70.
R.
Hernández
,
A.
Nogales
,
M.
Sprung
,
C.
Mijangos
, and
T. A.
Ezquerra
, “
Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS)
,”
J. Chem. Phys.
140
,
024909
(
2014
).
71.
A.
Meyer
, “
Self-diffusion in liquid copper as seen by quasielastic neutron scattering
,”
Phys. Rev. B
81
,
012102
(
2010
).
72.
P.
Meakin
, “
Fractal aggregates
,”
Adv. Colloid Interface Sci.
28
,
249
331
(
1987
).
73.
A.
Pal
,
T.
Zinn
,
M. A.
Kamal
,
T.
Narayanan
, and
P.
Schurtenberger
, “
Anomalous dynamics of magnetic anisotropic colloids studied by XPCS
,”
Small
14
,
1802233
(
2018
).

Supplementary Material

You do not currently have access to this content.