Soft porous coordination polymers (SPCPs) are materials with exceptional potential because of their ability to incorporate the properties of nominally rigid porous materials like metal–organic frameworks (MOFs) and those of soft matter, such as polymers of intrinsic microporosity (PIMs). This combination could offer the gas adsorption properties of MOFs together with the mechanical stability and processability of PIMs, opening up a space of flexible, highly responsive adsorbing materials. In order to understand their structure and behavior, we present a process for the construction of amorphous SPCPs from secondary building blocks. We then use classical molecular dynamics simulations to characterize the resulting structures based on branch functionalities (f), pore size distributions (PSDs), and radial distribution functions and compare them to experimentally synthesized analogs. In the course of this comparison, we demonstrate that the pore structure of SPCPs is due to both pores intrinsic to the secondary building blocks, and intercolloid spacing between colloid particles. We also illustrate the differences in nanoscale structure based on linker length and flexibility, particularly in the PSDs, finding that stiff linkers tend to produce SPCPs with larger maximum pore sizes.

1.
V.
Guillerm
,
D.
Kim
,
J. F.
Eubank
,
R.
Luebke
,
X.
Liu
,
K.
Adil
,
M. S.
Lah
, and
M.
Eddaoudi
, “
A supermolecular building approach for the design and construction of metal–organic frameworks
,”
Chem. Soc. Rev.
43
(
16
),
6141
6172
(
2014
).
2.
D.
Kim
,
X.
Liu
, and
M. S.
Lah
, “
Topology analysis of metal–organic frameworks based on metal–organic polyhedra as secondary or tertiary building units
,”
Inorg. Chem. Front.
2
(
4
),
336
(
2015
).
3.
A. C.
Sudik
,
A. R.
Millward
,
N. W.
Ockwig
,
A. P.
Côté
,
J.
Kim
, and
O. M.
Yaghi
, “
Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal–organic tetrahedral and heterocuboidal polyhedra
,”
J. Am. Chem. Soc.
127
(
19
),
7110
7118
(
2005
).
4.
N. S.
Bobbitt
and
R. Q.
Snurr
, “
Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage
,”
Mol. Simul.
45
(
14–15
),
1069
1081
(
2019
).
5.
Y. J.
Colón
,
D.
Fairen-Jimenez
,
C. E.
Wilmer
, and
R. Q.
Snurr
, “
High-Throughput screening of porous crystalline materials for hydrogen storage capacity near room temperature
,”
J. Phys. Chem. C
118
(
10
),
5383
5389
(
2014
).
6.
Y.
Lin
,
C.
Kong
,
Q.
Zhang
, and
L.
Chen
, “
Metal-organic frameworks for carbon dioxide capture and methane storage
,”
Adv. Energy Mater.
7
(
4
),
1601296
(
2017
).
7.
A.
Torrisi
,
C.
Mellot-Draznieks
, and
R. G.
Bell
, “
Impact of ligand on CO2 adsorption in metal-organic frameworks: First principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring
,”
J. Chem. Phys.
130
(
19
),
194703
(
2009
).
8.
J.
Jiao
,
C.
Tan
,
Z.
Li
,
Y.
Liu
,
X.
Han
, and
Y.
Cui
, “
Design and assembly of chiral coordination cages for asymmetric sequential reactions
,”
J. Am. Chem. Soc.
140
(
6
),
2251
2259
(
2018
).
9.
J.
Liang
,
Z.
Liang
,
R.
Zou
, and
Y.
Zhao
, “
Heterogeneous catalysis in zerolites, mesoporous silica, and metal–organic frameworks
,”
Adv. Mater.
29
(
30
),
1701139
(
2017
).
10.
J. A.
Greathouse
,
N. W.
Ockwig
,
L. J.
Criscenti
,
T. R.
Guilinger
,
P.
Pohl
, and
M. D.
Allendorf
, “
Computational screening of metal–organic frameworks for large-molecule chemical sensing
,”
Phys. Chem. Chem. Phys.
12
(
39
),
12621
12629
(
2010
).
11.
L. E.
Kreno
,
K.
Leong
,
O. K.
Farha
,
M.
Allendorf
,
R. P.
Van Duyne
, and
J. T.
Hupp
, “
Metal–organic framework materials as chemical sensors
,”
Chem. Rev.
112
(
2
),
1105
1125
(
2012
).
12.
K.
Kim
,
S. J.
S
,
D.
Whang
,
H.
Lee
,
S. I.
Jun
,
J.
Oh
, and
Y. J.
Jeon
, “
A homochiral metal-organic porous material for enantioselective separation and catalysis
,”
Nature
404
(
6781
),
982
986
(
2000
).
13.
X.
Zhao
,
Y.
Wang
,
D. S.
Li
,
X.
Bu
, and
P.
Feng
, “
Metal-organic frameworks for separations
,”
Adv. Mater.
30
(
37
),
1705189
(
2018
).
14.
J.
Sang
,
F.
Wei
, and
X.
Dong
, “
Gas adsorption and separation in metal–organic frameworks by PC-SAFT based density functional theory
,”
J. Chem. Phys.
155
(
12
),
124113
(
2021
).
15.
M. C.
Bernini
,
D.
Fairen-Jimenez
,
M.
Pasinetti
,
A. J.
Ramirez-Pastor
, and
R. Q.
Snurr
, “
Screening of bio-compatible metal–organic frameworks as potential drug carriers using Monte Carlo simulations
,”
J. Mater. Chem.
2
(
7
),
766
774
(
2014
).
16.
C.
Gaudin
,
D.
Cunha
,
E.
Ivanoff
,
P.
Horcajada
,
G.
Chevé
,
A.
Yasri
,
O.
Loget
,
C.
Serre
, and
G.
Maurin
, “
A quantitative structure activity relationship approach to probe the influence of the functionalization on the drug encapsulation of porous metal-organic frameworks
,”
Microporous Mesoporous Mater.
157
,
124
130
(
2012
).
17.
R. M.
Rego
,
G.
Kuriya
,
M. D.
Kurkuri
, and
M.
Kigga
, “
MOF based engineering materials in water remediation: Recent trends
,”
J. Hazard. Mater.
403
,
123605
(
2021
).
18.
Y.
Yao
,
C.
Wang
,
J.
Na
,
M. S. A.
Hossain
,
X.
Yan
,
H.
Zhang
,
M. A.
Amin
,
J.
Qi
,
Y.
Yamauchi
, and
J.
Li
, “
Macroscopic MOF architectures: Effective strategies for practical application in water treatment
,”
Small
18
(
8
),
2104387
(
2022
).
19.
K.
Polak-Kraśna
,
R.
Dawson
,
L. T.
Holyfield
,
C. R.
Bowen
,
A. D.
Burrows
, and
T. J.
Mays
, “
Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications
,”
J. Mater. Sci.
52
(
7
),
3862
3875
(
2016
).
20.
R.
Swaidan
,
B.
Ghanem
,
E.
Litwiller
, and
I.
Pinnau
, “
Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity
,”
Macromolecules
48
(
18
),
6553
6561
(
2015
).
21.
M. J.
Van Vleet
,
T.
Weng
,
X.
Li
, and
J. R.
Schmidt
, “
In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth
,”
Chem. Rev.
118
(
7
),
3681
3721
(
2018
).
22.
A.
Carné-Sánchez
,
G. A.
Craig
,
P.
Larpent
,
V.
Guillerm
,
K.
Urayama
,
D.
Maspoch
, and
S.
Furukawa
, “
A coordinative solubilizer method to fabricate soft porous materials from insoluble metal–organic polyhedra
,”
Angew. Chem.
58
(
19
),
6413
6416
(
2019
).
23.
Z.
Wang
,
G. A.
Craig
,
A.
Legrand
,
F.
Haase
,
S.
Minami
,
K.
Urayama
, and
S.
Furukawa
, “
Porous colloidal hydrogels formed by coordination-driven self-assembly of charged metal-organic polyhedra
,”
Chem. Asian J.
16
(
9
),
1092
1100
(
2021
).
24.
A. C. B.
Rodrigues
,
I. S.
Geisler
,
P.
Klein
,
J.
Pina
,
F. J. H.
Neuhaus
,
E.
Dreher
,
C. W.
Lehmann
,
U.
Scherf
, and
J.
Sérgio Seixas de Melo
, “
Designing highly fluorescent, arylated poly(phenylene vinylene)s of intrinsic microporosity
,”
J. Mater. Chem.
8
(
7
),
2248
2257
(
2020
).
25.
J.
Troyano
,
A.
Carné-Sánchez
,
C.
Avci
,
I.
Imaz
, and
D.
Maspoch
, “
Colloidal metal–organic framework particles: The pioneering case of ZIF-8
,”
Chem. Soc. Rev.
48
(
23
),
5534
5546
(
2019
).
26.
C.
Avci
,
I.
Imaz
,
A.
Carné-Sánchez
,
J. A.
Pariente
,
N.
Tasios
,
J.
Pérez-Carvajal
,
M. I.
Alonso
,
A.
Blanco
,
M.
Dijkstra
,,
C.
López
, and
D.
Maspoch
, “
Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures
,”
Nat. Chem.
10
(
1
),
78
84
(
2018
).
27.
Y.
Colón
,
A.
Guo
,
L.
Antony
,
K.
Hoffmann
, and
J.
de Pablo
, “
Fre energy of metal-organic framework self-assembly
,”
J. Chem. Phys.
150
(
10
),
104502
(
2019
).
28.
L.
Donà
,
J.
Brandenburg
, and
B.
Civalleri
, “
Metal–organic frameworks properties from hybrid density functional approximations
,”
J. Chem. Phys.
156
(
9
),
094706
(
2022
).
29.
Z.
Wang
,
C.
Villa Santos
,
A.
Legrand
,
F.
Haase
,
Y.
Hara
,
K.
Kanamori
,
T.
Aoyama
,
K.
Urayama
,
C. M.
Doherty
,
G. J.
Smales
,
B. R.
Pauw
,
Y. J.
Colón
, and
S.
Furukawa
, “
Multiscale structural control of linked metal-organic polyhedra gel by aging-induced linkage-reorganization
,”
Chem. Sci.
12
(
38
),
12556
12563
(
2021
).
30.
M. Y.
Tsang
,
S.
Tokuda
,
P.-C.
Han
,
Z.
Wang
,
A.
Legrand
,
M.
Kawano
,
M.
Tsujimoto
,
Y.
Ikeno
,
K.
Urayama
,
K. C.-W.
Wu
, and
S.
Furukawa
, “
Controlled sequential assembly of metal–organic polyhedra into colloidal gels with high chemical complexity
,”
Small Struct.
3
,
2100197
(
2022
).
31.
E.
Sánchez-González
,
M. Y.
Tsang
,
J.
Troyano
,
G. A.
Craig
, and
S.
Furukawa
, “
Assembling metal–organic cages as porous materials
,”
Chem. Soc. Rev.
51
(
12
),
4876
4889
(
2022
).
32.
Y. J.
Colón
and
S.
Furukawa
, “
Understanding the role of linker flexibility in soft porous coordination polymers
,”
Mol. Syst. Des. Eng.
5
(
1
),
284
293
(
2020
).
33.
P. G.
Boyd
,
S. M.
Moosavi
,
M.
Witman
, and
B.
Smit
, “
Force-Field prediction of materials properties in metal-organic frameworks
,”
J. Phys. Chem. Lett.
8
(
2
),
357
363
(
2017
).
34.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
(
25
),
10024
10035
(
1992
).
35.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ‘t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
36.
L. J.
Abbott
,
K. E.
Hart
, and
C. M.
Colina
, “
Polymatic: A generalized simulated polymerization algorithm for amorphous polymers
,”
Theor. Chem. Acc.
132
(
3
),
1334
(
2013
).
37.
L.
Abbott
and
C.
Colina
, “
Polymatic: A simulated polymerization algorithm
” (
2013
) (available: https://nanohub.org/resources/17278; accessed 2021).
38.
M. T.
Humbert
,
Y.
Zhang
, and
E. J.
Maginn
, “
PyLAT: Python LAMMPS analysis tools
,”
J. Chem. Inf. Model.
59
(
4
),
1301
1305
(
2019
).
39.
T. F.
Willems
,
C. H.
Rycroft
,
M.
Kazi
,
J. C.
Meza
, and
M.
Haranczyk
, “
Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
,”
Microporous Mesoporous Mater.
149
(
1
),
134
141
(
2012
).
40.
L.
Sarkisov
,
R.
Bueno-Perez
,
M.
Sutharson
, and
D.
Fairen-Jimenez
, “
Materials informatics with poreblazer v4.0 and the CSD MOF database
,”
Chem. Mater.
32
(
23
),
9849
9867
(
2020
).
41.
Z.
Wang
,
T.
Aoyama
,
E.
Sánchez-González
,
T.
Inose
,
K.
Urayama
, and
S.
Furukawa
, “
Control of extrinsic porosities in linked metal–organic polyhedra gels by imparting coordination-driven self-assembly with electrostatic repulsion
,”
ACS Appl. Mater. Interfaces
14
(
20
),
23660
23668
(
2022
).
42.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD - visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).

Supplementary Material

You do not currently have access to this content.