We numerically investigate the pressure drop reduction (PDR) performance of microchannels equipped with liquid-infused surfaces, along with determining the shape of the interface between the working fluid and lubricant within the microgrooves. The effects of different parameters, such as the Reynolds number of working fluid, density and viscosity ratios between the lubricant and working fluid, the ratio of the thickness of the lubricant layer over the ridges to the depth of the groove, and the Ohnesorge number as a representative of the interfacial tension, on the PDR and interfacial meniscus within the microgrooves are comprehensively studied. The results reveal that the density ratio and Ohnesorge number do not significantly affect the PDR. On the other hand, the viscosity ratio considerably affects the PDR, and a maximum PDR of 62% compared to a smooth non-lubricated microchannel is achieved for a viscosity ratio of 0.01. Interestingly, the higher the Reynolds number of the working fluid, the higher the PDR. The meniscus shape within the microgrooves is strongly affected by the Reynolds number of the working fluid. Despite the insignificant effect of interfacial tension on the PDR, the interface shape within the microgrooves is appreciably influenced by this parameter.

1.
A.
Heidarian
,
R.
Rafee
, and
M. S.
Valipour
,
Int. Commun. Heat Mass Transfer
117
,
104758
(
2020
).
2.
S.
Sarvar-Ardeh
,
R.
Rafee
, and
S.
Rashidi
,
Int. J. Therm. Sci.
181
,
107745
(
2022
).
3.
S.
Hatte
and
R.
Pitchumani
,
Int. J. Heat Mass Transfer
167
,
120810
(
2021
).
4.
S.
Hatte
and
R.
Pitchumani
,
Chem. Eng. J.
424
,
130256
(
2021
).
5.
F. Y.
Lv
and
P.
Zhang
,
Energy Convers. Manage.
113
,
165
(
2016
).
6.
M.
Villegas
,
Y.
Zhang
,
N.
Abu Jarad
,
L.
Soleymani
, and
T. F.
Didar
,
ACS Nano
13
,
8517
(
2019
).
7.
M.
Liravi
,
H.
Pakzad
,
A.
Moosavi
, and
A.
Nouri-Borujerdi
,
Prog. Org. Coat.
140
,
105537
(
2020
).
8.
H.
Bazyar
,
O. A.
Moultos
, and
R. G. H.
Lammertink
,
J. Chem. Phys.
157
,
144704
(
2022
).
9.
T.-S.
Wong
,
S. H.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
,
Nature
477
,
443
(
2011
).
10.
H.
Pakzad
,
A.
Nouri-Borujerdi
, and
A.
Moosavi
,
Prog. Org. Coat.
170
,
106970
(
2022
).
11.
K.
Kant
and
R.
Pitchumani
,
Chem. Eng. Sci.
230
,
116196
(
2021
).
12.
C.
Howell
,
T. L.
Vu
,
C. P.
Johnson
,
X.
Hou
,
O.
Ahanotu
,
J.
Alvarenga
,
D. C.
Leslie
,
O.
Uzun
,
A.
Waterhouse
,
P.
Kim
,
M.
Super
,
M.
Aizenberg
,
D. E.
Ingber
, and
J.
Aizenberg
,
Chem. Mater.
27
,
1792
(
2015
).
13.
https://liquiglide.com/applications/consumer/ last visited on 01 January 2023.
14.
16.
https://www.adaptivesurface.tech/marine/ last visited on 01 January 2023.
17.
https://liquiglide.com/applications/medical/ last visited on 01 January 2023.
19.
H.
Teng
,
N.
Liu
,
X.
Lu
, and
B.
Khomami
,
J. Fluid Mech.
846
,
482
(
2018
).
20.
S. A.
Mäkiharju
and
S. L.
Ceccio
,
Ocean Eng.
147
,
206
(
2018
).
21.
A.
Jetly
,
I. U.
Vakarelski
,
Z.
Yang
, and
S. T.
Thoroddsen
,
Exp. Therm. Fluid Sci.
102
,
181
(
2019
).
22.
H.
Pakzad
,
M.
Liravi
,
A.
Moosavi
,
A.
Nouri-Borujerdi
, and
H.
Najafkhani
,
Appl. Surf. Sci.
513
,
145754
(
2020
).
23.
S. V.
Rad
,
A.
Moosavi
,
A.
Nouri-Boroujerdi
,
H.
Najafkhani
, and
S.
Najafpour
,
Surf. Coat. Technol.
421
,
127406
(
2021
).
24.
M.
Fakhri
,
B.
Rezaee
,
H.
Pakzad
, and
A.
Moosavi
,
Tribol. Int.
178
,
108091
(
2023
).
25.
C.
Lee
and
C.-J.
Kim
,
Phys. Rev. Lett.
106
,
014502
(
2011
).
26.
E. J. G.
Cartagena
,
I.
Arenas
,
M.
Bernardini
, and
S.
Leonardi
,
Flow, Turbul. Combust.
100
,
945
(
2018
).
27.
A. M. J.
Davis
and
E.
Lauga
,
Phys. Fluids
21
,
011701
(
2009
).
28.
J.
Hyväluoma
and
J.
Harting
,
Phys. Rev. Lett.
100
,
246001
(
2008
).
29.
E.
Karatay
,
A. S.
Haase
,
C. W.
Visser
,
C.
Sun
,
D.
Lohse
,
P. A.
Tsai
, and
R. G. H.
Lammertink
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
8422
(
2013
).
30.
B. R.
Solomon
,
K. S.
Khalil
, and
K. K.
Varanasi
,
Langmuir
30
,
10970
(
2014
).
31.
W.
Rong
,
H.
Zhang
,
T.
Zhang
,
Z.
Mao
,
X.
Liu
, and
K.
Song
,
Adv. Eng. Mater.
23
,
2000821
(
2021
).
32.
J.
Ou
and
J. P.
Rothstein
,
Phys. Fluids
17
,
103606
(
2005
).
33.
S. J.
Lee
,
H. N.
Kim
,
W.
Choi
,
G. Y.
Yoon
, and
E.
Seo
,
Soft Matter
15
,
8459
(
2019
).
34.
J.-H.
Kim
and
J. P.
Rothstein
,
Exp. Fluids
57
,
81
(
2016
).
35.
H.
Zuo
,
F.
Javadpour
,
S.
Deng
, and
H.
Li
,
Phys. Fluids
32
,
082003
(
2020
).
36.
A.
Mohammadi
and
J. M.
Floryan
,
J. Fluids Eng.
137
,
041201
(
2015
).
37.
J.
Javaherchian
and
A.
Moosavi
,
Phys. Fluids
31
,
073106
(
2019
).
38.
M. J.
Abdollahzadeh
and
A.
Moosavi
,
J. Ocean Eng. Mar. Energy
6
,
221
(
2020
).
39.
A. A.
Hemeda
and
H. V.
Tafreshi
,
Langmuir
32
,
2955
(
2016
).
40.
C.
Schönecker
and
S.
Hardt
,
Microfluid. Nanofluid.
19
,
199
(
2015
).
41.
L.
Ren
,
H.
Hu
,
L.
bao
,
N. V.
Priezjev
,
J.
Wen
, and
L.
Xie
,
Phys. Fluids
34
,
082017
(
2022
).
42.
R. J.
Daniello
,
N. E.
Waterhouse
, and
J. P.
Rothstein
,
Phys. Fluids
21
,
085103
(
2009
).
43.
T.
Min
and
J.
Kim
,
Phys. Fluids
16
,
L55
(
2004
).
44.
S. A.
Maier
,
S. R.
Andrews
,
L.
Martín-Moreno
, and
F. J.
García-Vidal
,
Phys. Rev. Lett.
97
,
176805
(
2006
).
45.
J.
Sundin
,
S.
Zaleski
, and
S.
Bagheri
,
J. Fluid Mech.
915
,
R6
(
2021
).
46.
B. J.
Rosenberg
,
T.
Van Buren
,
M. K.
Fu
, and
A. J.
Smits
,
Phys. Fluids
28
,
015103
(
2016
).
47.
M. K.
Fu
,
I.
Arenas
,
S.
Leonardi
, and
M.
Hultmark
,
J. Fluid Mech.
824
,
688
(
2017
).
48.
S. J.
Kim
,
H. N.
Kim
,
S. J.
Lee
, and
H. J.
Sung
,
Phys. Fluids
32
,
091901
(
2020
).
49.
I.
Arenas
,
E.
García
,
M. K.
Fu
,
P.
Orlandi
,
M.
Hultmark
, and
S.
Leonardi
,
J. Fluid Mech.
869
,
500
(
2019
).
50.
T.
Yamada
,
C.
Hong
,
O. J.
Gregory
, and
M.
Faghri
,
Microfluid. Nanofluid.
11
,
45
(
2011
).
51.
A.
Faghri
and
Y.
Zhang
,
Transport Phenomena in Multiphase Systems
(
Elsevier
,
2006
).
52.
M.
Wörner
,
Microfluid. Nanofluid.
12
,
841
(
2012
).
53.
H.
Liu
and
Y.
Zhang
,
Phys. Fluids
23
,
082101
(
2011
).
54.
H.
Zuo
,
F.
Javadpour
,
S.
Deng
,
X.
Jiang
,
Z.
Li
, and
H.
Li
,
J. Chem. Phys.
153
,
191101
(
2020
).
55.
F.
Bai
,
X.
He
,
X.
Yang
,
R.
Zhou
, and
C.
Wang
,
Int. J. Multiphase Flow
93
,
130
(
2017
).
56.
Lord Rayleigh
,
London, Edinburgh, Dublin Philos. Mag.
33
,
209
(
1892
).
57.
J. D.
van der Waals
,
K.
Verhandel
Konink. Acad. Wetensch. Amsterdam
(Sect. 1)
1
,
56
(
1893
).
58.
J.
Kim
,
Commun. Comput. Phys.
12
,
613
(
2012
).
59.
J. J.
Feng
,
C.
Liu
,
J.
Shen
, and
P.
Yue
, “
Modeling soft matter
,” in
Modeling of Soft Matter
(
Springer
,
2005
), pp.
1
26
, https://link.springer.com/chapter/10.1007/0-387-32153-5_1.
60.
D.
Jacqmin
,
J. Comput. Phys.
155
,
96
(
1999
).
61.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
31
,
688
(
1959
).
62.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
63.
C. S.
O’hern
,
L. E.
Silbert
,
A. J.
Liu
, and
S. R.
Nagel
,
Phys. Rev. E
68
,
011306
(
2003
).
64.
J.
Zhu
,
L.-Q.
Chen
,
J.
Shen
, and
V.
Tikare
,
Phys. Rev. E
60
,
3564
(
1999
).
65.
H. A. A.
Amiri
and
A. A.
Hamouda
,
Int. J. Multiphase Flow
52
,
22
(
2013
).
66.
R.
Qiu
,
R.
Huang
,
Y.
Xiao
,
J.
Wang
,
Z.
Zhang
,
J.
Yue
,
Z.
Zeng
, and
Y.
Wang
,
Phys. Fluids
34
,
052109
(
2022
).
67.
Y.
Xiao
,
Z.
Zeng
,
L.
Zhang
,
J.
Wang
,
Y.
Wang
,
H.
Liu
, and
C.
Huang
,
Phys. Fluids
34
,
022114
(
2022
).
68.
S.
Mirjalili
,
S. S.
Jain
, and
A.
Mani
,
Int. J. Heat Mass Transfer
197
,
123326
(
2022
).
69.
P.
Yue
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
,
J. Fluid Mech.
515
,
293
(
2004
).
70.
C. Y.
Lim
and
Y. C.
Lam
,
Microfluid. Nanofluid.
17
,
131
(
2014
).
71.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
,
J. Comput. Phys.
100
,
335
(
1992
).
72.
S.
Mirjalili
and
A.
Mani
,
J. Comput. Phys.
426
,
109918
(
2021
).
73.
A.
Lovrić
,
W. G.
Dettmer
, and
D.
Perić
, arXiv:1911.06718 (
2019
).
74.
T. E.
Tezduyar
and
S.
Sathe
,
Comp. Methods Appl. Mech. Eng.
195
,
1621
1632
(
2006
).
75.
T. J. R.
Hughes
,
G.
Scovazzi
, and
L. P.
Franca
,
Encyclopedia of Computational Mechanics
, 2nd ed. (
John Wiley & Sons, Ltd.
,
2018
), p.
1
.
76.
J.
Guzmán
,
A. J.
Salgado
, and
F.-J.
Sayas
,
J. Sci. Comput.
56
,
219
(
2013
).
77.
W. G.
Dettmer
,
C.
Kadapa
, and
D.
Perić
,
Comput. Methods Appl. Mech. Eng.
311
,
415
(
2016
).
78.
C.
Geuzaine
and
J.-F.
Remacle
,
Int. J. Numer. Methods Eng.
79
,
1309
(
2009
).
79.
S.
Wooh
and
D.
Vollmer
,
Angew. Chem., Int. Ed.
55
,
6822
(
2016
).
80.
J.
Wang
,
L.
Wang
,
N.
Sun
,
R.
Tierney
,
H.
Li
,
M.
Corsetti
,
L.
Williams
,
P. K.
Wong
, and
T.-S.
Wong
,
Nat. Sustainability
2
,
1097
(
2019
).
81.
L.
Chen
,
S.
Park
,
J.
Yoo
,
H.
Hwang
,
H.
Kim
,
J.
Lee
,
J.
Hong
, and
S.
Wooh
,
Adv. Mater. Interfaces
7
,
2000305
(
2020
).
82.
M.
Tenjimbayashi
,
R.
Togasawa
,
K.
Manabe
,
T.
Matsubayashi
,
T.
Moriya
,
M.
Komine
, and
S.
Shiratori
,
Adv. Funct. Mater.
26
,
6693
(
2016
).
83.
W.
Chen
,
A. Y.
Fadeev
,
M. C.
Hsieh
,
D.
Öner
,
J.
Youngblood
, and
T. J.
McCarthy
,
Langmuir
15
,
3395
(
1999
).
84.
P.
Gao
and
J. J.
Feng
,
Phys. Fluids
21
,
102102
(
2009
).
You do not currently have access to this content.