Photochromic molecules are widely studied and developed for their many potential applications. To optimize the required properties through theoretical models, a considerable chemical space is to be explored, and their environment in devices is to be accounted for.. To this end, cheap and reliable computational methods can be powerful tools to steer synthetic developments. As ab initio methods remain costly for extensive studies (in terms of the size of the system and/or number of molecules), semiempirical methods such as density functional tight-binding (TB) could offer a good compromise between accuracy computational cost. However, these approaches necessitate benchmarking on the families of compounds of interest. Thus, the aim of the present study is to evaluate the accuracy of several key features calculated with TB methods (DFTB2, DFTB3, GFN2-xTB, and LC-DFTB2) for three sets of photochromic organic molecules: azobenzene (AZO), norbornadiene/quadricyclane (NBD/QC), and dithienylethene (DTE) derivatives. The features considered here are the optimized geometries, the difference in energy between the two isomers (ΔE), and of the energies of the first relevant excited states. All the TB results are compared to those obtained with DFT methods and state-of-the-art electronic structure calculation methods: DLPNO-CCSD(T) for ground states and DLPNO-STEOM-CCSD for excited states. Our results show that, overall, DFTB3 is the TB method leading to the best results for the geometries and the ΔE values and can be used alone for these purposes for NBD/QC and DTE derivatives. Single point calculations at the r2SCAN-3c level using TB geometries allow circumventing the deficiencies of the TB methods in the AZO series. For electronic transition calculations, the range separated LC-DFTB2 method is the most accurate TB method tested for AZO and NBD/QC derivatives, in close agreement with the reference.

1.
A. K.
Saydjari
,
P.
Weis
,
S.
Wu
,
A. K.
Saydjari
,
P.
Weis
, and
S.
Wu
, “
Spanning the solar spectrum: Azopolymer solar thermal fuels for simultaneous UV and visible light storage
,”
Adv. Energy Mater.
7
(
3
),
1601622
(
2017
).
2.
Z.
Wang
,
P.
Erhart
,
T.
Li
,
Z.-Y.
Zhang
,
D.
Sampedro
,
Z.
Hu
,
H. A.
Wegner
,
O.
Brummel
,
J.
Libuda
,
M. B.
Nielsen
, and
K.
Moth-Poulsen
, “
Storing energy with molecular photoisomers
,”
Joule
5
(
12
),
3116
3136
(
2021
).
3.
Y.
Feng
,
H.
Liu
,
W.
Luo
,
E.
Liu
,
N.
Zhao
,
K.
Yoshino
, and
W.
Feng
, “
Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage
,”
Sci. Rep.
3
(
1
),
3260
(
2013
).
4.
D.
Zhitomirsky
,
E.
Cho
,
J. C.
Grossman
,
D.
Zhitomirsky
,
E.
Cho
, and
J. C.
Grossman
, “
Solid-state solar thermal fuels for heat release applications
,”
Adv. Energy Mater.
6
(
6
),
1502006
(
2016
).
5.
T. J.
Kucharski
,
N.
Ferralis
,
A. M.
Kolpak
,
J. O.
Zheng
,
D. G.
Nocera
, and
J. C.
Grossman
, “
Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels
,”
Nat. Chem.
6
(
5
),
441
447
(
2014
).
6.
M.-M.
Russew
and
S.
Hecht
, “
Photoswitches: From molecules to materials
,”
Adv. Mater.
22
(
31
),
3348
3360
(
2010
).
7.
W.
Szymański
,
J. M.
Beierle
,
H. A. V.
Kistemaker
,
W. A.
Velema
, and
B. L.
Feringa
, “
Reversible photocontrol of biological systems by the incorporation of molecular photoswitches
,”
Chem. Rev.
113
(
8
),
6114
6178
(
2013
).
8.
D.
Bléger
and
S.
Hecht
, “
Visible-light-activated molecular switches
,”
Angew. Chem., Int. Ed.
54
(
39
),
11338
11349
(
2015
).
9.
R.
Göstl
,
A.
Senf
, and
S.
Hecht
, “
Remote-controlling chemical reactions by light: Towards chemistry with high spatio-temporal resolution
,”
Chem. Soc. Rev.
43
(
6
),
1982
1996
(
2014
).
10.
A.
Fihey
,
R.
Russo
,
L.
Cupellini
,
D.
Jacquemin
, and
B.
Mennucci
, “
Is energy transfer limiting multiphotochromism? Answers from ab initio quantifications
,”
Phys. Chem. Chem. Phys.
19
(
3
),
2044
2052
(
2017
).
11.
I.
Gur
,
K.
Sawyer
, and
R.
Prasher
, “
Searching for a better thermal battery
,”
Science
335
(
6075
),
1454
1455
(
2012
).
12.
H. M. D.
Bandara
and
S. C.
Burdette
, “
Photoisomerization in different classes of azobenzene
,”
Chem. Soc. Rev.
41
(
5
),
1809
1825
(
2012
).
13.
R.
Klajn
, “
Spiropyran-Based dynamic materials
,”
Chem. Soc. Rev.
43
(
1
),
148
184
(
2013
).
14.
M.
Irie
,
T.
Fukaminato
,
K.
Matsuda
, and
S.
Kobatake
, “
Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators
,”
Chem. Rev.
114
(
24
),
12174
12277
(
2014
).
15.
J.
Orrego-Hernández
,
A.
Dreos
, and
K.
Moth-Poulsen
, “
Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications
,”
Acc. Chem. Res.
53
(
8
),
1478
1487
(
2020
).
16.
T. C.
Pijper
,
O.
Ivashenko
,
M.
Walko
,
P.
Rudolf
,
W. R.
Browne
, and
B. L.
Feringa
, “
Position and orientation control of a photo-and electrochromic dithienylethene using a tripodal anchor on gold surfaces
,”
Phys. Chem. C
119
(
7
),
3648
(
2015
).
17.
C.
Schuschke
,
C.
Hohner
,
M.
Jevric
,
A.
Ugleholdt Petersen
,
Z.
Wang
,
M.
Schwarz
,
M.
Kettner
,
F.
Waidhas
,
L.
Fromm
,
C. J.
Sumby
,
A.
Görling
,
O.
Brummel
,
K.
Moth-Poulsen
, and
J.
Libuda
, “
Solar energy storage at an atomically defined organic-oxide hybrid interface
,”
Nat. Commun.
10
(
1
),
2384
(
2019
).
18.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
(
11
),
7260
(
1998
).
19.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
, “
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB)
,”
J. Chem. Theory Comput.
7
(
4
),
931
948
(
2011
).
20.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-XTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
(
3
),
1652
1671
(
2019
).
21.
F.
Spiegelman
,
N.
Tarrat
,
J.
Cuny
,
L.
Dontot
,
E.
Posenitskiy
,
C.
Martí
,
A.
Simon
, and
M.
Rapacioli
, “
Density-functional tight-binding: Basic concepts and applications to molecules and clusters
,”
Adv. Phys.: X
5
(
1
),
1710252
(
2020
).
22.
H.
Uratani
,
T.
Yoshikawa
, and
H.
Nakai
, “
Trajectory surface hopping approach to condensed-phase nonradiative relaxation dynamics using divide-and-conquer spin-flip time-dependent density-functional tight binding
,”
J. Chem. Theory Comput.
17
(
3
),
1290
1300
(
2021
).
23.
M. T. d. N.
Varella
,
L.
Stojanović
,
V. Q.
Vuong
,
S.
Irle
,
T. A.
Niehaus
, and
M.
Barbatti
, “
How the size and density of charge-transfer excitons depend on heterojunction’s architecture
,”
J. Phys. Chem. C
125
(
10
),
5458
5474
(
2021
).
24.
M.
Koerstz
,
A. S.
Christensen
,
K. V.
Mikkelsen
,
M. B.
Nielsen
, and
J. H.
Jensen
, “
High throughput virtual screening of 230 billion molecular solar heat battery candidates
,”
PeerJ Phys. Chem.
3
,
e16
(
2021
).
25.
R.
Szabo
,
K. N.
Le
, and
T.
Kowalczyk
, “
Multifactor theoretical modeling of solar thermal fuels built on azobenzene and norbornadiene scaffolds
,”
Sustain. Energy Fuels
5
(
8
),
2335
2346
(
2021
).
26.
L.
Dong
,
Y.
Feng
,
L.
Wang
, and
W.
Feng
, “
Azobenzene-based solar thermal fuels: Design, properties, and applications
,”
Chem. Soc. Rev.
47
(
19
),
7339
7368
(
2018
).
27.
M.
Quant
,
A.
Lennartson
,
A.
Dreos
,
M.
Kuisma
,
P.
Erhart
,
K.
Börjesson
, and
K.
Moth-Poulsen
, “
Low molecular weight norbornadiene derivatives for molecular solar-thermal energy storage
,”
Chem. - A Eur. J.
22
(
37
),
13265
13274
(
2016
).
28.
M.
Jevric
,
A. U.
Petersen
,
M.
Mansø
,
S.
Kumar Singh
,
Z.
Wang
,
A.
Dreos
,
C.
Sumby
,
M. B.
Nielsen
,
K.
Börjesson
,
P.
Erhart
, and
K.
Moth-Poulsen
, “
Norbornadiene-based photoswitches with exceptional combination of solar spectrum match and long-term energy storage
,”
Chem. - A Eur. J.
24
(
49
),
12767
12772
(
2018
).
29.
V. Q.
Vuong
,
J.
Akkarapattiakal Kuriappan
,
M.
Kubillus
,
J. J.
Kranz
,
T.
Mast
,
T. A.
Niehaus
,
S.
Irle
,
M.
Elstner
, and
M.
Elstner
, “
Parametrization and benchmark of long-range corrected DFTB2 for organic molecules
,”
J. Chem. Theory Comput.
14
,
115
125
(
2017
).
30.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
32.
A. D.
Becke
, “
Density‐functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
33.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
(
1–3
),
51
57
(
2004
).
34.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J.-M.
Mewes
, “
R2SCAN-3c: A “Swiss Army Knife” composite electronic-structure method
,”
J. Chem. Phys.
154
(
6
),
064103
(
2021
).
35.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
, “
Natural triple excitations in local coupled cluster calculations with pair natural orbitals
,”
J. Chem. Phys.
139
(
13
),
134101
(
2013
).
36.
D. G.
Liakos
,
Y.
Guo
, and
F.
Neese
, “
Comprehensive benchmark results for the domain based local pair natural orbital coupled cluster method (DLPNO-CCSD(T)) for closed- and open-shell systems
,”
J. Phys. Chem. A
124
(
1
),
90
100
(
2019
).
37.
W.
Kabsch
, “
Solution for the best rotation to relate two sets of vectors
,”
Acta Crystallogr., Sect. A
32
(
5
),
922
923
(
1976
).
38.
M. W.
Walker
,
L.
Shao
, and
R. A.
Volz
, “
Estimating 3-D location parameters using dual number quaternions
,”
CVGIP Image Underst
54
(
3
),
358
367
(
1991
).
39.
T. A.
Niehaus
,
S.
Suhai
,
F.
Della Sala
,
P.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
, “
Tight-binding approach to time-dependent density-functional response theory
,”
Phys. Rev. B
63
(
8
),
085108
(
2001
).
40.
M.
Nooijen
and
R. J.
Bartlett
, “
A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory
,”
J. Chem. Phys.
106
(
15
),
6441
(
1997
).
41.
M.
Nooijen
and
R. J.
Bartlett
, “
Similarity transformed equation-of-motion coupled-cluster theory: Details, examples, and comparisons
,”
J. Chem. Phys.
107
(
17
),
6812
(
1997
).
42.
A. K.
Dutta
,
M.
Nooijen
,
F.
Neese
, and
R.
Izsák
, “
Automatic active space selection for the similarity transformed equations of motion coupled cluster method
,”
J. Chem. Phys.
146
(
7
),
074103
(
2017
).
43.
A. K.
Dutta
,
M.
Nooijen
,
F.
Neese
, and
R.
Izsák
, “
Exploring the accuracy of a low scaling similarity transformed equation of motion method for vertical excitation energies
,”
J. Chem. Theory Comput.
14
(
1
),
72
91
(
2018
).
44.
F.
Neese
,
F.
Wennmohs
, and
U.
Becker
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
,
224108
(
2020
).
45.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafé
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrică
,
A.
Dominguez
,
S.
Ehlert
,
M.
Elstner
,
T.
van der Heide
,
J.
Hermann
,
S.
Irle
,
J. J.
Kranz
,
C.
Köhler
,
T.
Kowalczyk
,
T.
Kubař
,
I. S.
Lee
,
V.
Lutsker
,
R. J.
Maurer
,
S. K.
Min
,
I.
Mitchell
,
C.
Negre
,
T. A.
Niehaus
,
A. M. N.
Niklasson
,
A. J.
Page
,
A.
Pecchia
,
G.
Penazzi
,
M. P.
Persson
,
J.
Řezáč
,
C. G.
Sánchez
,
M.
Sternberg
,
M.
Stöhr
,
F.
Stuckenberg
,
A.
Tkatchenko
,
V. W.-z.
Yu
, and
T.
Frauenheim
, “
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
(
12
),
124101
(
2020
).
46.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
(
18
),
3297
3305
(
2005
).
47.
R. A.
Kendall
and
H. A.
Früchtl
, “
The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development
,”
Theor. Chem. Acc.
97
(
1–4
),
158
163
(
1997
).
48.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘Chain-of-Spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
(
1
),
98
109
(
2009
).
49.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
(
2
),
1007
(
1989
).
50.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Calculation of the electron affinities of the second row atoms: Al–Cl
,”
J. Chem. Phys.
99
(
5
),
3730
(
1993
).
51.
D. G.
Liakos
,
M.
Sparta
,
M. K.
Kesharwani
,
J. M. L.
Martin
, and
F.
Neese
, “
Exploring the accuracy limits of local pair natural orbital coupled-cluster theory
,”
J. Chem. Theory Comput.
11
(
4
),
1525
1539
(
2015
).
52.
J.
Olmsted
,
J.
Lawrence
, and
G. G.
Yee
, “
Photochemical storage potential of azobenzenes
,”
Sol. Energy
30
(
3
),
271
274
(
1983
).
53.
C. E.
Weston
,
R. D.
Richardson
,
P. R.
Haycock
,
A. J. P.
White
, and
M. J.
Fuchter
, “
Arylazopyrazoles: Azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives
,”
J. Am. Chem. Soc.
136
(
34
),
11878
11881
(
2014
).
54.
A. A.
Beharry
,
O.
Sadovski
, and
G. A.
Woolley
, “
Azobenzene photoswitching without ultraviolet light
,”
J. Am. Chem. Soc.
133
(
49
),
19684
19687
(
2011
).
55.
A.
Humeniuk
and
R.
Mitrić
, “
Long-range correction for tight-binding TD-DFT
,”
J. Chem. Phys.
143
(
13
),
134120
(
2015
).
56.
L. u.
Vetráková
,
V.
Ladányi
,
J.
Al Anshori
,
P.
Dvořák
,
J.
Wirz
, and
D.
Heger
, “
The absorption spectrum of cis-azobenzene†
,”
Photochem. Photobiol. Sci.
16
,
1749
(
2017
).
57.
M.
Irie
,
T.
Fukaminato
,
K.
Matsuda
, and
S.
Kobatake
, “
Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators
,”
Chem. Rev.
114
(
24
),
12174
12277
(
2014
).
58.
T.
Nakashima
,
K.
Atsumi
,
S.
Kawai
,
T.
Nakagawa
,
Y.
Hasegawa
, and
T.
Kawai
, “
Photochromism of thiazole-containing triangle terarylenes
,”
Eur. J. Org. Chem.
2007
(
19
),
3212
3218
.

Supplementary Material

You do not currently have access to this content.