Ab initio and semiempirical electronic structure methods are usually implemented in separate software packages or use entirely different code paths. As a result, it can be time-consuming to transfer an established ab initio electronic structure scheme to a semiempirical Hamiltonian. We present an approach to unify ab initio and semiempirical electronic structure code paths based on a separation of the wavefunction ansatz and the needed matrix representations of operators. With this separation, the Hamiltonian can refer to either an ab initio or semiempirical treatment of the resulting integrals. We built a semiempirical integral library and interfaced it to the GPU-accelerated electronic structure code TeraChem. Equivalency between ab initio and semiempirical tight-binding Hamiltonian terms is assigned according to their dependence on the one-electron density matrix. The new library provides semiempirical equivalents of the Hamiltonian matrix and gradient intermediates, corresponding to those provided by the ab initio integral library. This enables the straightforward combination of semiempirical Hamiltonians with the full pre-existing ground and excited state functionality of the ab initio electronic structure code. We demonstrate the capability of this approach by combining the extended tight-binding method GFN1-xTB with both spin-restricted ensemble-referenced Kohn–Sham and complete active space methods. We also present a highly efficient GPU implementation of the semiempirical Mulliken-approximated Fock exchange. The additional computational cost for this term becomes negligible even on consumer-grade GPUs, enabling Mulliken-approximated exchange in tight-binding methods for essentially no additional cost.

1.
K. N.
Houk
and
F.
Liu
, “
Holy grails for computational organic chemistry and biochemistry
,”
Acc. Chem. Res.
50
(
3
),
539
543
(
2017
).
2.
S.
Grimme
and
P. R.
Schreiner
, “
Computational chemistry: The fate of current methods and future challenges
,”
Angew. Chem., Int. Ed.
57
(
16
),
4170
4176
(
2018
).
3.
F.
Neese
,
M.
Atanasov
,
G.
Bistoni
,
D.
Maganas
, and
S.
Ye
, “
Chemistry and quantum mechanics in 2019: Give us insight and numbers
,”
J. Am. Chem. Soc.
141
(
7
),
2814
2824
(
2019
).
4.
S.
Grimme
, “
Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations
,”
J. Chem. Theory Comput.
15
(
5
),
2847
2862
(
2019
).
5.
H. L.
Woodcock
,
M.
Hodošček
, and
B. R.
Brooks
, “
Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms
,”
J. Phys. Chem. A
111
(
26
),
5720
5728
(
2007
).
6.
P.
Pracht
,
F.
Bohle
, and
S.
Grimme
, “
Automated exploration of the low-energy chemical space with fast quantum chemical methods
,”
Phys. Chem. Chem. Phys.
22
,
7169
7192
(
2020
).
7.
S.
Grimme
,
C.
Bannwarth
,
S.
Dohm
,
A.
Hansen
,
J.
Pisarek
,
P.
Pracht
,
J.
Seibert
, and
F.
Neese
, “
Fully automated quantum-chemistry-based computation of spin–spin-coupled nuclear magnetic resonance spectra
,”
Angew. Chem., Int. Ed.
56
(
46
),
14763
14769
(
2017
).
8.
S.
Grimme
, “
Supramolecular binding thermodynamics by dispersion-corrected density functional theory
,”
Chem. Eur. J.
18
(
32
),
9955
9964
(
2012
).
9.
P. S.
Hudson
,
H. L.
Woodcock
, and
S.
Boresch
, “
Use of nonequilibrium work methods to compute free energy differences between molecular mechanical and quantum mechanical representations of molecular systems
,”
J. Phys. Chem. Lett.
6
(
23
),
4850
4856
(
2015
).
10.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
11.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
1
),
73
78
(
2012
).
12.
ADF 2019.3, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com, Optionally, you may add the following list of authors and contributors,
E. J.
Baerends
,
T.
Ziegler
,
A. J.
Atkins
,
J.
Autschbach
,
O.
Baseggio
,
D.
Bashford
,
A.
Bérces
,
F. M.
Bickelhaupt
,
C.
Bo
,
P. M.
Boerrigter
,
L.
Cavallo
,
C.
Daul
,
D. P.
Chong
,
D. V.
Chulhai
,
L.
Deng
,
R. M.
Dickson
,
J. M.
Dieterich
,
D. E.
Ellis
,
M.
van Faassen
,
L.
Fan
,
T. H.
Fischer
,
A.
Förster
,
C.
Fonseca Guerra
,
M.
Franchini
,
A.
Ghysels
,
A.
Giammona
,
S. J. A.
van Gisbergen
,
A.
Goez
,
A. W.
Götz
,
J. A.
Groeneveld
,
O. V.
Gritsenko
,
M.
Grüning
,
S.
Gusarov
,
F. E.
Harris
,
P.
van den Hoek
,
Z.
Hu
,
C. R.
Jacob
,
H.
Jacobsen
,
L.
Jensen
,
L.
Joubert
,
J. W.
Kaminski
,
G.
van Kessel
,
C.
König
,
F.
Kootstra
,
A.
Kovalenko
,
M. V.
Krykunov
,
E.
van Lenthe
,
D. A.
McCormack
,
A.
Michalak
,
M.
Mitoraj
,
S. M.
Morton
,
J.
Neugebauer
,
V. P.
Nicu
,
L.
Noodleman
,
V. P.
Osinga
,
S.
Patchkovskii
,
M.
Pavanello
,
C. A.
Peeples
,
P. H. T.
Philipsen
,
D.
Post
,
C. C.
Pye
,
H.
Ramanantoanina
,
P.
Ramos
,
W.
Ravenek
,
J. I.
Rodríguez
,
P.
Ros
,
R.
Rüger
,
P. R. T.
Schipper
,
D.
Schlüns
,
H.
van Schoot
,
G.
Schreckenbach
,
J. S.
Seldenthuis
,
M.
Seth
,
J. G.
Snijders
,
M.
Solà
,
M.
Stener
,
M.
Swart
,
D.
Swerhone
,
V.
Tognetti
,
G.
te Velde
,
P.
Vernooijs
,
L.
Versluis
,
L.
Visscher
,
O.
Visser
,
F.
Wang
,
T. A.
Wesolowski
,
E. M.
van Wezenbeek
,
G.
Wiesenekker
,
S. K.
Wolff
,
T. K.
Woo
, and
A. L.
Yakovlev
.
13.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
, “
Chemistry with ADF
,”
J. Comput. Chem.
22
(
9
),
931
967
(
2001
).
14.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
(
2
),
184
215
(
2015
).
15.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k: atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
(
1
),
15
25
(
2014
).
16.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
(
18
),
184107
(
2020
).
17.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
(
2
),
024109
(
2020
).
18.
E.
Aprà
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la-Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
(
18
),
184102
(
2020
).
19.
W.
Kutzelnigg
, “
Der quantenchemische ausdruck für die bindungsenergie eines beliebigen moleküls in der MO‐LCAO‐näherung und seine physikalische interpretation
,” in
Einführung in die Theoretische Chemie, Part II: Die Chemische Bindung
(
Wiley-VCH
,
2001
), p.
67
.
20.
V.
Lutsker
,
B.
Aradi
, and
T. A.
Niehaus
, “
Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method
,”
J. Chem. Phys.
143
(
18
),
184107
(
2015
).
21.
A.
Humeniuk
and
R.
Mitrić
, “
Long-range correction for tight-binding TD-DFT
,”
J. Chem. Phys.
143
(
13
),
134120
(
2015
).
22.
J.
Almlöf
,
K.
Faegri
, Jr.
, and
K.
Korsell
, “
Principles for a direct SCF approach to LICAO–MO ab-initio calculations
,”
J. Comput. Chem.
3
(
3
),
385
399
(
1982
).
23.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
(
5–6
),
514
518
(
1993
).
24.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
(
18
),
4285
4291
(
2002
).
25.
N. H. F.
Beebe
and
J.
Linderberg
, “
Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,”
Int. J. Quantum Chem.
12
(
4
),
683
705
(
1977
).
26.
F.
Weigend
and
M.
Häser
, “
RI-MP2: First derivatives and global consistency
,”
Theor. Chem. Acc.
97
(
1
),
331
340
(
1997
).
27.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation
,”
J. Chem. Theory Comput.
5
(
4
),
1004
1015
(
2009
).
28.
I. S.
Ufimtsev
and
T. J.
Martínez
, “
Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation
,”
J. Chem. Theory Comput.
4
(
2
),
222
231
(
2008
).
29.
S.
Seritan
,
C.
Bannwarth
,
B. S.
Fales
,
E. G.
Hohenstein
,
S. I. L.
Kokkila-Schumacher
,
N.
Luehr
,
J. W.
Snyder
,
C.
Song
,
A. V.
Titov
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
TeraChem: Accelerating electronic structure and ab initio molecular dynamics with graphical processing units
,”
J. Chem. Phys.
152
(
22
),
224110
(
2020
).
30.
A. S.
Christensen
,
T.
Kubař
,
Q.
Cui
, and
M.
Elstner
, “
Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications
,”
Chem. Rev.
116
(
9
),
5301
5337
(
2016
).
31.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
(
3
),
1652
1671
(
2019
).
32.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
, “
A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86)
,”
J. Chem. Theory Comput.
13
(
5
),
1989
2009
(
2017
).
33.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
34.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
35.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
(
3
),
034112
(
2017
).
36.
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
H.
Neugebauer
,
S.
Spicher
,
C.
Bannwarth
, and
S.
Grimme
, “
A generally applicable atomic-charge dependent London dispersion correction
,”
J. Chem. Phys.
150
(
15
),
154122
(
2019
).
37.
A. M.
Köster
,
M.
Leboeuf
, and
D. R.
Salahub
, “
Molecular electrostatic potentials from density functional theory
,” in
Theoretical and Computational Chemistry
, edited by
J. S.
Murray
and
K.
Sen
(
Elsevier
,
1996
), Vol. 3, pp
105
142
.
38.
N.
Mataga
and
K.
Nishimoto
, “
Electronic structure and spectra of nitrogen heterocycles
,”
Z. Phys. Chem.
13
(
3–4
),
140
157
(
1957
).
39.
K.
Ohno
, “
Some remarks on the Pariser-Parr-Pople method
,”
Theor. Chim. Acta
2
(
3
),
219
227
(
1964
).
40.
G.
Klopman
, “
A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules
,”
J. Am. Chem. Soc.
86
(
21
),
4550
4557
(
1964
).
41.
See https://github.com/grimme-lab/xtb for xtb code version 6.2.
42.
Y.
Nishimoto
, “
Time-dependent density-functional tight-binding method with the third-order expansion of electron density
,”
J. Chem. Phys.
143
(
9
),
094108
(
2015
).
43.
G.
Klopman
and
R. C.
Evans
, “
The neglect-of-differential-overlap methods of molecular orbital theory
,” in
Semiempirical Methods of Electronic Structure Calculation: Part A: Techniques
, edited by
G. A.
Segal
(
Springer US
,
Boston, MA
,
1977
), pp
29
67
.
44.
B. M.
Bold
,
M.
Sokolov
,
S.
Maity
,
M.
Wanko
,
P. M.
Dohmen
,
J. J.
Kranz
,
U.
Kleinekathöfer
,
S.
Höfener
, and
M.
Elstner
, “
Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes
,”
Phys. Chem. Chem. Phys.
22
,
10500
10518
(
2020
).
45.
L.
Stojanović
,
S. G.
Aziz
,
R. H.
Hilal
,
F.
Plasser
,
T. A.
Niehaus
, and
M.
Barbatti
, “
Nonadiabatic dynamics of cycloparaphenylenes with TD-DFTB surface hopping
,”
J. Chem. Theory Comput.
13
(
12
),
5846
5860
(
2017
).
46.
Y.
Nishimoto
, “
Time-dependent long-range-corrected density-functional tight-binding method combined with the polarizable continuum model
,”
J. Phys. Chem. A
123
(
26
),
5649
5659
(
2019
).
47.
L. K.
McKemmish
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
, “
Mixed Ramp–Gaussian basis sets
,”
J. Chem. Theory Comput.
10
(
10
),
4369
4376
(
2014
).
48.
M.
Filatov
, “
Spin-restricted ensemble-referenced Kohn–Sham method: Basic principles and application to strongly correlated ground and excited states of molecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
(
1
),
146
167
(
2015
).
49.
M.
Filatov
,
F.
Liu
, and
T. J.
Martínez
, “
Analytical derivatives of the individual state energies in ensemble density functional theory method. I. General formalism
,”
J. Chem. Phys.
147
(
3
),
034113
(
2017
).
50.
F.
Liu
,
M.
Filatov
, and
T. J.
Martínez
, “
Analytical derivatives of the individual state energies in ensemble density functional theory. II. Implementation on graphical processing units (GPUs)
,”
J. Chem. Phys.
154
,
104108
(
2021
).
51.
I. S.
Lee
,
M.
Filatov
, and
S. K.
Min
, “
Formulation and implementation of the spin-restricted ensemble-referenced Kohn–Sham method in the context of the density functional tight binding approach
,”
J. Chem. Theory Comput.
15
(
5
),
3021
3032
(
2019
).
53.
M.
Häser
and
R.
Ahlrichs
, “
Improvements on the direct SCF method
,”
J. Comput. Chem.
10
(
1
),
104
111
(
1989
).
54.
R. M.
Parrish
,
F.
Liu
, and
T. J.
Martínez
, “
Communication: A difference density picture for the self-consistent field ansatz
,”
J. Chem. Phys.
144
(
13
),
131101
(
2016
).
55.
C.
Bannwarth
,
J. K.
Yu
,
E. G.
Hohenstein
, and
T. J.
Martínez
, “
Hole–hole Tamm–Dancoff-approximated density functional theory: A highly efficient electronic structure method incorporating dynamic and static correlation
,”
J. Chem. Phys.
153
(
2
),
024110
(
2020
).
56.
S.
Grimme
and
C.
Bannwarth
, “
Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)
,”
J. Chem. Phys.
145
,
054103
(
2016
).
57.
T.
Risthaus
,
A.
Hansen
, and
S.
Grimme
, “
Excited states using the simplified Tamm-Dancoff-approach for range-separated hybrid density functionals: Development and application
,”
Phys. Chem. Chem. Phys.
16
,
14408
14419
(
2014
).
58.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3
,”
J. Chem. Phys.
128
,
134110
(
2008
).
59.
A.
Nikiforov
,
J. A.
Gamez
,
W.
Thiel
,
M.
Huix-Rotllant
, and
M.
Filatov
, “
Assessment of approximate computational models for conical intersections and branching plane vectors in organic molecules
,”
J. Chem. Phys.
141
,
124122
(
2014
).
60.
J.
Kästner
,
J. M.
Carr
,
T. W.
Keal
,
W.
Thiel
,
A.
Wander
, and
P.
Sherwood
, “
DL-FIND: An open-source geometry optimizer for atomistic simulations
,”
J. Phys. Chem. A
113
,
11856
11865
(
2009
).
61.
M. E.
Casida
, in
Time-Dependent Density Functional Response Theory for Molecules in: Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Vol. 1.
62.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
(
3–4
),
291
299
(
1999
).
63.
E. G.
Hohenstein
, “
Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals
,”
J. Chem. Phys.
145
(
17
),
174110
(
2016
).
64.
E. G.
Hohenstein
,
M. E. F.
Bouduban
,
C.
Song
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units
,”
J. Chem. Phys.
143
(
1
),
014111
(
2015
).
65.
J. W.
Snyder
,
E. G.
Hohenstein
,
N.
Luehr
, and
T. J.
Martínez
, “
An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units
,”
J. Chem. Phys.
143
(
15
),
154107
(
2015
).
66.
C.
Bannwarth
and
S.
Grimme
, “
A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules
,”
Comput. Theor. Chem.
1040–1041
,
45
53
(
2014
).
67.
C.
Köhler
,
G.
Seifert
, and
T.
Frauenheim
, “
Density functional based calculations for Fen (n ⩽ 32)
,”
Chem. Phys.
309
(
1
),
23
31
(
2005
).
68.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
, “
Conical intersections and double excitations in time-dependent density functional theory
,”
Mol. Phys.
104
,
1039
1051
(
2006
).

Supplementary Material

You do not currently have access to this content.