Graph-based linear scaling electronic structure theory for quantum-mechanical molecular dynamics simulations [A. M. N. Niklasson et al., J. Chem. Phys. 144, 234101 (2016)] is adapted to the most recent shadow potential formulations of extended Lagrangian Born–Oppenheimer molecular dynamics, including fractional molecular-orbital occupation numbers [A. M. N. Niklasson, J. Chem. Phys. 152, 104103 (2020) and A. M. N. Niklasson, Eur. Phys. J. B 94, 164 (2021)], which enables stable simulations of sensitive complex chemical systems with unsteady charge solutions. The proposed formulation includes a preconditioned Krylov subspace approximation for the integration of the extended electronic degrees of freedom, which requires quantum response calculations for electronic states with fractional occupation numbers. For the response calculations, we introduce a graph-based canonical quantum perturbation theory that can be performed with the same natural parallelism and linear scaling complexity as the graph-based electronic structure calculations for the unperturbed ground state. The proposed techniques are particularly well-suited for semi-empirical electronic structure theory, and the methods are demonstrated using self-consistent charge density-functional tight-binding theory both for the acceleration of self-consistent field calculations and for quantum-mechanical molecular dynamics simulations. Graph-based techniques combined with the semi-empirical theory enable stable simulations of large, complex chemical systems, including tens-of-thousands of atoms.

1.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
2.
D. R.
Bowler
and
T.
Miyazaki
,
Rep. Prog. Phys.
75
,
036503
(
2012
).
3.
A. E.
Clark
,
H.
Adams
,
R.
Hernandez
,
A. I.
Krylov
,
A. M. N.
Niklasson
,
S.
Sarupria
,
Y.
Wang
,
S. M.
Wild
, and
Q.
Yang
,
ACS Cent. Sci.
7
,
1271
(
2021
).
4.
M. J.
Cawkwell
,
E. J.
Sanville
,
S. M.
Mniszewski
, and
A. M. N.
Niklasson
,
J. Chem. Theory Comput.
8
,
4094
(
2012
).
5.
J.
Finkelstein
,
J. S.
Smith
,
S. M.
Mniszewski
,
K.
Barros
,
C. F. A.
Negre
,
E. H.
Rubensson
, and
A. M. N.
Niklasson
,
J. Chem. Theory Comput.
17
,
2256
(
2021
).
6.
J.
Finkelstein
,
J. S.
Smith
,
S. M.
Mniszewski
,
K.
Barros
,
C. F. A.
Negre
,
E. H.
Rubensson
, and
A. M. N.
Niklasson
,
J. Chem. Theory Comput.
17
,
6180
(
2021
).
7.
H.
Shang
,
X.
Duan
,
F.
Li
,
L.
Zhang
,
Z.
Xu
,
K.
Liu
,
H.
Luo
,
Y.
Ji
,
W.
Zhao
,
W.
Xue
,
L.
Chen
, and
Y.
Zhang
,
Comput. Phys. Commun.
267
,
108045
(
2021
).
8.
NVIDIA corporation, cuSOLVER,
2021
; accessed: 15/4/2021.
9.
N.
Bock
,
C. F. A.
Negre
,
S. M.
Mniszewski
,
J.
Mohd-Yusof
,
B.
Aradi
,
J.-L.
Fattebert
,
D.
Osei-Kuffuor
,
T. C.
Germann
, and
A. M. N.
Niklasson
,
J. Supercomput.
74
,
6201
6219
(
2018
).
10.
NVIDIA corporation, cuBLAS, https://developer.nvidia.com/cuBLAS (
2021
); accessed: 15/4/2021.
11.
S. M.
Mniszewski
,
J.
Belak
,
J.-L.
Fattebert
,
C. F. A.
Negre
,
S. R.
Slattery
,
A. A.
Adedoyin
,
R. F.
Bird
,
C. S.
Chang
,
G.
Chen
,
S.
Ethier
,
S.
Fogerty
,
S.
Habib
,
C.
Junghans
,
D.
Lebrun-Grandi
,
J.
Mohd-Yusof
,
S. G.
Moore
,
D.
Osei-Kuffuor
,
S. J.
Plimpton
,
A.
Pope
,
S. T.
Reeve
,
L.
Ricketson
,
A.
Scheinberg
,
A. Y.
Sharma
, and
M. E.
Wall
, Special Journal Issue: ECP Co-design and Computational Motifs (unpublished) (
2020
).
12.
S.
Goedecker
and
L.
Colombo
,
Phys. Rev. Lett.
73
,
122
(
1994
).
13.
G.
Galli
,
Curr. Opin. Solid State Mater. Sci.
1
,
864
(
1996
).
14.
E.
Tsuchida
,
J. Phys.: Condens. Matter
20
,
294212
(
2008
).
15.
F.
Shimojo
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashista
,
Phys. Rev. B
77
,
085103
(
2008
).
16.
M. J.
Cawkwell
and
A. M. N.
Niklasson
,
J. Chem. Phys.
137
,
134105
(
2012
).
17.
J.
VandeVondele
,
U.
Borštnik
, and
J.
Hutter
,
J. Chem. Theory Comput.
8
,
3565
(
2012
).
18.
M.
Arita
,
D. R.
Bowler
, and
T.
Miyazaki
,
J. Chem. Theory Comput.
10
,
5419
(
2014
).
19.
F.
Shimojo
,
S.
Hattori
,
R. K.
Kalia
,
M.
Kusaneth
,
W. W.
Mou
,
A.
Nakano
,
K.
Nomura
,
S.
Ohmura
,
P.
Rajak
,
K.
Shimamura
, and
P.
Vashista
,
J. Chem. Phys.
140
,
18A529
(
2014
).
20.
D.
Osei-Kuffuor
,
J. L.
Fattebert
, and
F.
Gygi
,
Phys. Rev. Lett.
112
,
046401
(
2014
).
21.
T.
Otsuka
,
M.
Taiji
,
D. R.
Bowler
, and
T.
Miyazaki
,
Jpn. J. Appl. Phys.
55
,
1102B1
(
2016
).
22.
A. M. N.
Niklasson
,
S. M.
Mniszewski
,
C. F. A.
Negre
,
M. J.
Cawkwell
,
P. J.
Swart
,
J.
Mohd-Yusof
,
T. C.
Germann
,
M. E.
Wall
,
N.
Bock
,
E. H.
Rubensson
, and
H.
Djidjev
,
J. Chem. Phys.
144
,
234101
(
2016
).
23.
H. N.
Djidjev
,
G.
Hahn
,
S. M.
Mniszewski
,
C. F.
Negre
,
A. M.
Niklasson
, and
V. B.
Sardeshmukh
, “
Graph partitioning methods for fast parallel quantum molecular dynamics
,” in
2016 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing
(
Society for Industrial and Applied Mathematics
,
2016
), pp.
42
51
.
24.
M.
Lass
,
S.
Mohr
,
H.
Wiebeler
,
T.
Kühne
, and
C.
Plessl
, in
Proceedings of the Platform for Advanced Scientific Computing (PASC) Conference
(
ACM
,
2018
).
25.
H. N.
Djidjev
,
G.
Hahn
,
S. M.
Mniszewski
,
C. F. A.
Negre
, and
A. M. N.
Niklasson
,
Algorithms
12
,
187
(
2019
).
26.
M.
Lass
,
R.
Schade
,
T.
Kühne
, and
C.
Plessl
, in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC)
(
IEEE Computer Society
,
2020
), p.
1127
.
27.
28.
P. D.
Walker
and
P. G.
Mezey
,
J. Am. Chem. Soc.
115
,
12423
(
1993
).
29.
W.
Yang
and
T. S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
30.
I. A.
Abrikosov
,
A. M. N.
Niklasson
,
S. I.
Simak
,
B.
Johansson
,
A. V.
Ruban
, and
H. L.
Skriver
,
Phys. Rev. Lett.
76
,
4203
(
1996
).
31.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
32.
S.
Li
,
W.
Li
, and
T.
Fang
,
J. Am. Chem. Soc.
127
,
7215
(
2005
).
33.
T.
Ozaki
,
Phys. Rev. B
74
,
245101
(
2006
).
34.
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
,
J. Chem. Theory Comput.
10
,
4801
(
2014
).
35.
V. Q.
Vuong
,
Y.
Nishimoto
,
D. G.
Fedorov
,
B. G.
Sumpter
,
T. A.
Niehaus
, and
S.
Irle
,
J. Chem. Theory Comput.
15
,
3008
(
2019
).
36.
Y.
Nishimoto
and
S.
Irle
, “
The FMO-DFTB method
,” in
Recent Advances of the Fragment Molecular Orbital Method: Enhanced Performance and Applicability
, edited by
Y.
Mochizuki
,
S.
Tanaka
, and
K.
Fukuzawa
(
Springer Singapore
,
Singapore
,
2021
), pp.
459
485
.
37.
G. W.
Stewart
, in
Sparse Matrix Computations
, edited by
J. R.
Banch
and
D. J.
Rose
(
Academic Press
,
New York
,
1976
), pp.
113
130
.
38.
S.
Pissanetzky
,
Sparse Matrix Technology
(
Academic Press
,
London
,
1984
).
39.
G.
Brussino
and
V.
Sonnad
,
Int. J. Numer. Methods Eng.
28
,
801
(
1989
).
40.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
(
PWS Publishing
,
Boston
,
1996
).
41.
E.
Schwegler
and
M.
Challacombe
,
J. Chem. Phys.
105
,
2726
(
1996
).
42.
M.
Challacombe
and
E.
Schwegler
,
J. Chem. Phys.
106
,
5526
(
1997
).
43.
A. D.
Daniels
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
1321
(
1999
).
44.
A. M. N.
Niklasson
,
Phys. Rev. B
66
,
155115
(
2002
).
45.
A. M. N.
Niklasson
,
C. J.
Tymczak
, and
M.
Challacombe
,
J. Chem. Phys.
118
,
8611
(
2003
).
46.
E. H.
Rubensson
and
P.
Sałek
,
J. Comput. Chem.
26
,
1628
(
2005
).
47.
D. K.
Jordan
and
D. A.
Mazziotti
,
J. Chem. Phys.
122
,
084114
(
2005
).
48.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
,
J. Phys. Chem. A
111
,
5678
(
2007
).
49.
E. H.
Rubensson
,
E.
Rudberg
, and
P.
Sałek
,
J. Chem. Phys.
128
,
074106
(
2008
).
50.
A. M. N.
Niklasson
, “
Density matrix methods in linear scaling electronic structure theory
,” in
Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications
, edited by
R.
Zalesny
,
M. G.
Papadopoulos
,
P. G.
Mezey
, and
J.
Leszczynski
(
Springer Netherlands
,
Dordrecht
,
2011
), pp.
439
473
.
51.
A.
Buluc
and
J. R.
Gilbert
,
SIAM J. Sci. Comput.
34
,
C170
(
2012
).
52.
N.
Bock
and
M.
Challacombe
,
SIAM J. Sci. Comput.
35
,
C72
(
2013
).
53.
U.
Borstnik
,
J.
VandeVondele
,
V.
Weber
, and
J.
Hutter
,
Parallel Comput.
40
,
47
(
2014
).
54.
V.
Weber
,
T.
Laino
,
A.
Pozdneev
,
I.
Fedulova
, and
A.
Curioni
,
J. Chem. Theory Comput.
11
,
3145
(
2015
).
55.
P.
Pinski
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
143
,
034108
(
2015
).
56.
L. A.
Truflandier
,
R. M.
Dianzinga
, and
D. R.
Bowler
,
J. Chem. Phys.
144
,
091102
(
2016
).
57.
A.
Kruchinina
,
E.
Rudberg
, and
E. H.
Rubensson
,
J. Chem. Theory Comput.
12
,
5788
(
2016
).
58.
R.
Schade
,
T.
Kenter
,
H.
Elgabarty
,
M.
Lass
,
O.
Schütt
,
A.
Lazzaro
,
H.
Pabst
,
S.
Mohr
,
J.
Hutter
,
T. D.
Kühne
, and
C.
Plessl
,
Parallel Comput.
111
,
102920
(
2022
).
59.

Graph-based linear scaling electronic structure theory has been recently used by Schade and co-workers, who call it the submatrix method or the non-orthogonal local submatrix method (NOLSM),58 but without referring to the original and equivalent method in Ref. 22.

60.
A. M. N.
Niklasson
,
J. Chem. Phys.
147
,
054103
(
2017
).
61.
A. M. N.
Niklasson
,
J. Chem. Phys.
152
,
104103
(
2020
).
62.
A. M. N.
Niklasson
,
Eur. Phys. J. B
94
,
164
(
2021
).
63.
A. F.
Voter
,
Phys. Rev. Lett.
78
,
3908
(
1997
).
64.
A. F.
Voter
and
F.
Montalenti
,
Annu. Rev. Mater. Res.
32
,
321
(
2002
).
65.
D.
Perez
,
B. P.
Uberuaga
,
Y.
Shim
,
J. G.
Amar
, and
A. F.
Voter
,
Annual Reports in Computational Chemistry
(
Elsevier
,
2009
), Vol. 5, pp.
79
98
; available at https:// www.sciencedirect.com/science/article/pii/S1574140009005040.
66.
D.
Perez
,
E. D.
Cubuk
,
A.
Waterland
,
E.
Kaxiras
, and
A. F.
Voter
,
J. Chem. Theory Comput.
12
,
18
(
2016
).
67.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
68.
V.
Weber
,
A. M. N.
Niklasson
, and
M.
Challacombe
,
Phys. Rev. Lett.
92
,
193002
(
2004
).
69.
C.
Ochsenfeld
,
J.
Kussmann
, and
F.
Koziol
,
Angew. Chem.
43
,
4485
(
2004
).
70.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
204103
(
2007
).
71.
J.
Kussmann
,
A.
Luenser
,
M.
Beer
, and
C.
Ochsenfeld
,
J. Chem. Phys.
142
,
094101
(
2015
).
72.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
73.
M. W.
Finnis
,
A. T.
Paxton
,
M.
Methfessel
, and
M.
van Schilfgaarde
,
Phys. Rev. Lett.
81
,
5149
(
1998
).
74.
B.
Hourahine
et al,
J. Chem. Phys.
152
,
124101
(
2020
).
75.
M. J. S.
Dewar
and
W.
Thiel
,
Theor. Chim. Acta
46
,
89
(
1977
).
76.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
77.
J. J. P.
Stewart
,
J. Mol. Model.
19
,
1
(
2013
).
78.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2018
).
79.
P. O.
Dral
,
X.
Wu
, and
W.
Thiel
,
J. Chem. Theory Comput.
15
,
1743
(
2019
).
80.
W.
Malone
,
B.
Nebgen
,
A.
White
,
Y.
Zhang
,
H.
Song
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
B.
Rodriguez-Hernandez
,
V. M.
Freixas
,
S.
Fernandez-Alberti
,
A. E.
Roitberg
,
T. R.
Nelson
, and
S.
Tretiak
,
J. Chem. Theory Comput.
16
,
5771
(
2020
).
81.
G.
Zhou
,
B.
Nebgen
,
N.
Lubbers
,
W.
Malone
,
A. M. N.
Niklasson
, and
S.
Tretiak
,
J. Chem. Theory Comput.
16
,
4951
(
2020
).
82.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2020
).
83.
G.
Golub
and
C. F.
van Loan
,
Matrix Computations
(
Johns Hopkins University Press
,
Baltimore
,
1996
).
84.
A. M. N.
Niklasson
,
J. Chem. Theory Comput.
16
,
3628
(
2020
).
85.
A. M. N.
Niklasson
, “
Density matrix methods in linear scaling electronic structure theory
,” in
Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications
, edited by
R.
Zalesny
,
M. G.
Papadopoulos
,
P. G.
Mezey
, and
J.
Leszczynski
(
Springer
,
Dordrecht, Netherlands
,
2011
), pp.
439
473
.
86.
C. F. A.
Negre
,
S. M.
Mniszewski
,
M. J.
Cawkwell
,
N.
Bock
,
M. E.
Wall
, and
A. M. N.
Niklasson
,
J. Chem. Theory Comput.
12
,
3063
(
2016
).
87.
A. M. N.
Niklasson
,
V.
Weber
, and
M.
Challacombe
,
J. Chem. Phys.
123
,
044107
(
2005
).
88.
A. M. N.
Niklasson
,
S. M.
Mniszewski
,
C. F. A.
Negre
,
M. E.
Wall
,
M. J.
Cawkwell
, and
N.
Bock
, PROGRESS version 1.0,
2016
, https://github.com/lanl/qmd-progress.
89.
M. J.
Cawkwell
et al, LATTE,
2010
, Los Alamos National Laboratory (LA-CC-10004), http://www.github.com/lanl/latte.
90.
R.
McWeeny
,
Proc. R. Soc. London, Ser. A
235
,
496
(
1956
).
91.
A. H. R.
Palser
and
D. E.
Manolopoulos
,
Phys. Rev. B
58
,
12704
(
1998
).
92.
K.
Németh
and
G. E.
Scuseria
,
J. Chem. Phys.
113
,
6035
(
2000
).
93.
A. M. N.
Niklasson
,
Phys. Rev. B
68
,
233104
(
2003
).
94.
E.
Rudberg
and
E. H.
Rubensson
,
J. Phys.: Condens. Matter
23
,
075502
(
2011
).
95.
E. H.
Rubensson
,
J. Chem. Theory Comput.
7
,
1233
(
2011
).
96.
P.
Suryanarayana
,
Chem. Phys. Lett.
555
,
291
(
2013
).
97.
E. H.
Rubensson
and
A. M. N.
Niklasson
,
SIAM J. Sci. Comput.
36
,
148
(
2014
).
98.
H.
Shang
,
W.
Liang
,
Y.
Zhang
, and
J.
Yang
,
Comput. Phys. Commun.
258
,
107613
(
2021
).
99.
J.
Finkelstein
,
E. H.
Rubensson
,
S. M.
Mniszewski
,
C. F. A.
Negre
, and
A. M. N.
Niklasson
,
J. Chem. Theory Comput.
18
,
4255
(
2022
).
100.
R.
Pederson
,
J.
Kozlowski
,
R.
Song
,
J.
Beall
,
M.
Ganahl
,
M.
Hauru
,
A. G. M.
Lewis
,
Y.
Yao
,
S. B.
Mallick
,
V.
Blum
, and
G.
Vidal
, “
Large scale quantum chemistry with tensor processing units
,”
J. Chem. Theory Comput.
19
(
1
),
25
32
(
2023
).
101.
G.
Karypis
and
V.
Kumar
,
SIAM J. Sci. Comput.
20
,
359
(
1999
).
102.
103.
J. W.
Neidigh
,
R. M.
Fesinmeyer
, and
N. H.
Andersen
, “
Designing a 20-residue protein
,”
Nat. Struct. Biol.
9
(
6
),
425
430
(
2002
).
104.
P.
Ghale
,
M. P.
Kroonblawd
,
S.
Mniszewski
,
C. F. A.
Negre
,
R.
Pavel
,
S.
Pino
,
V.
Sardeshmukh
,
G.
Shi
, and
G.
Hahn
,
SIAM J. Sci. Comput.
39
,
C466
(
2017
).
105.
N. D.
Mermin
,
Ann. Phys.
21
,
99
(
1963
).
106.
N. D.
Mermin
,
Phys. Rev. B
137
,
A1441
(
1965
).
107.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
108.
A. M. N.
Niklasson
,
J. Chem. Phys.
129
,
244107
(
2008
).
109.
A. M. N.
Niklasson
,
Phys. Rev. Lett.
100
,
123004
(
2008
).
110.
P.
Souvatzis
and
A. M. N.
Niklasson
,
J. Chem. Phys.
140
,
044117
(
2014
).
111.
J.
Kolafa
,
J. Comput. Chem.
25
,
335
(
2003
).
112.
P.
Pulay
and
G.
Fogarasi
,
Chem. Phys. Lett.
386
,
272
(
2004
).
113.
J. M.
Herbert
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
7
,
3269
(
2005
).
114.
A. M. N.
Niklasson
,
C. J.
Tymczak
, and
M.
Challacombe
,
Phys. Rev. Lett.
97
,
123001
(
2006
).
115.
T. D.
Kühne
,
M.
Krack
,
F. R.
Mohamed
, and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
066401
(
2007
).
116.
H.
Yoshida
,
Phys. Lett. A
150
,
262
(
1990
).
117.
C.
Grebogi
,
S. M.
Hammel
,
J. A.
Yorke
, and
T.
Sauer
,
Phys. Rev. Lett.
65
,
1527
(
1990
).
118.
S.
Toxvaerd
,
Phys. Rev. E
50
,
2271
(
1994
).
119.
J.
Gans
and
D.
Shalloway
,
Phys. Rev. E
61
,
4587
(
2000
).
120.
R. E.
Engle
,
R. D.
Skeel
, and
M.
Drees
,
J. Comput. Phys.
206
(
2
),
432
452
(
2005
).
121.
S. D.
Bond
and
B. J.
Leimkuhler
,
Molecular Dynamics and the Accuracy of Numerically Computed Averages
(
Cambridge University Press
,
Cambridge, UK
,
2007
).
122.
S.
Toxvaerd
,
O. J.
Heilmann
, and
J. C.
Dyre
,
J. Chem. Phys.
136
,
224106
(
2012
).
123.
K. D.
Hammonds
and
D. M.
Heyes
,
J. Chem. Phys.
152
,
024114
(
2020
).
124.
E.
Forest
and
R. D.
Ruth
,
Physica D
43
,
105
(
1990
).
125.
P. J.
Channell
and
C.
Scovel
,
Nonlinearity
3
,
231
(
1990
).
126.
R. I.
McLachlan
and
P.
Atela
,
Nonlinearity
5
,
541
(
1992
).
127.
B. J.
Leimkuhler
and
R. D.
Skeel
,
J. Comput. Phys.
112
,
117
(
1994
).
128.
J.
Finkelstein
,
C.
Cheng
,
G.
Fiorin
,
B.
Seibold
, and
N.
Grønbech-Jensen
,
J. Chem. Phys.
153
,
134101
(
2020
).
129.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
130.
S.
Bonella
,
A.
Coretti
,
R.
Vuilleumier
, and
G.
Ciccotti
,
Phys. Chem. Chem. Phys.
22
,
10775
(
2020
).
131.
A.
Coretti
,
L.
Scalfi
,
C.
Bacon
,
B.
Rotenberg
,
R.
Vuilleumier
,
G.
Ciccotti
,
M.
Salanne
, and
S.
Bonella
,
J. Chem. Phys.
152
,
194701
(
2020
).
132.
A.
Coretti
,
T.
Baird
,
R.
Vuilleumier
, and
S.
Bonella
,
J. Chem. Phys.
157
,
214110
(
2022
).
133.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
134.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
135.
R.
Dreizler
and
K.
Gross
,
Density-Functional Theory
(
Springer-Verlag
,
Berlin, Heidelberg
,
1990
).
136.
M.
Weinert
and
J. W.
Davenport
,
Phys. Rev. B
45
,
13709
(
1992
).
137.
R. M.
Wentzcovitch
,
J. L.
Martins
, and
P. B.
Allen
,
Phys. Rev. B
45
,
R11372
(
1992
).
138.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
139.
R.
McWeeny
,
Phys. Rev.
114
,
1528
(
1959
).
140.
T.
Hirakawa
,
T.
suzuki
,
D. R.
Bowler
, and
T.
Miyazaki
,
J. Phys.: Condens. Matter
29
,
405901
(
2017
).
141.

When n = ρ0[n], we have an exact self-consistent solution, and then, ρ0[n] = ρmin.

142.
A. M. N.
Niklasson
,
P.
Steneteg
,
A.
Odell
,
N.
Bock
,
M.
Challacombe
,
C. J.
Tymczak
,
E.
Holmström
,
G.
Zheng
, and
V.
Weber
,
J. Chem. Phys.
130
,
214109
(
2009
).
143.
P.
Steneteg
,
I. A.
Abrikosov
,
V.
Weber
, and
A. M. N.
Niklasson
,
Phys. Rev. B
82
,
075110
(
2010
).
144.
G.
Zheng
,
A. M. N.
Niklasson
, and
M.
Karplus
,
J. Chem. Phys.
135
,
044122
(
2011
).
145.
A. M. N.
Niklasson
,
M. J.
Cawkwell
,
E. H.
Rubensson
, and
E.
Rudberg
,
Phys. Rev. E
92
,
063301
(
2015
).
146.
Y.
Nishimoto
,
J. Chem. Phys.
146
,
084101
(
2017
).
147.
R.
McWeeny
,
Phys. Rev.
126
,
1028
(
1962
).
148.
A. M. N.
Niklasson
and
M.
Challacombe
,
Phys. Rev. Lett.
92
,
193001
(
2004
).
149.
L. A.
Truflandier
,
R. M.
Dianzinga
, and
D. R.
Bowler
,
J. Chem. Phys.
153
,
164105
(
2020
).
150.
V.
Weber
,
A. M. N.
Niklasson
, and
M.
Challacombe
,
J. Chem. Phys.
123
,
044106
(
2005
).
151.
J. W.
Cooley
and
J. W.
Tukey
,
Math. Comput.
19
,
297
(
1965
).
152.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
153.

Note that this approach needs to be adapted to work with other representations or the electronic degrees of freedom besides some coarse grained charge density, e.g., of partial atomic charges.

154.
S.
Das
and
V.
Gavini
, “
Accelerating self-consistent field iterations in Kohn-Sham density functional theory using a low rank approximation of the dielectric matrix
, arXiv:2211.07894 (
2022
).
155.
C. G.
Broyden
,
Math. Comput.
19
,
577
(
1965
).
156.
D. G.
Anderson
,
J. Assoc. Comput. Mach.
12
,
547
(
1965
).
157.
P.
Pulay
,
Chem. Phys. Lett.
73
,
393
(
1980
).
158.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
159.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
160.
T.
Frauenheim
,
G.
Seifert
,
M.
Elsterner
,
Z.
Hajnal
,
G.
Jungnickel
,
D.
Porezag
,
S.
Suhai
, and
R.
Scholz
,
Phys. Status Solidi B
217
,
41
(
2000
).
161.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
J. Chem. Theory Comput.
7
,
931
(
2011
).
162.
A.
Krishnapryian
,
P.
Yang
,
A. M. N.
Niklasson
, and
M. J.
Cawkwell
,
J. Chem. Theory Comput.
13
,
6191
(
2017
).
163.
P.
Pulay
,
G.
Fogarasi
,
F.
Pang
, and
J. E.
Boggs
,
J. Am. Chem. Soc.
101
,
2550
(
1979
).
164.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
,
Comput. Phys. Commun.
91
,
43
(
1995
).
165.
CHARMM-GUI, https://www.charmm-gui.org/; accessed: 27/11/2022.
166.
RCSB Protein Data Bank, 1L2Y, https://www.rcsb.org/structure/1L2Y; accessed: 27/11/2022.
167.
AmberTools22, https://ambermd.org/AmberTools.php; accessed: 27/11/2022.
168.
R.
Schade
,
T.
Kenter
,
H.
Elgabarty
,
M.
Lass
,
T. D.
Kühne
, and
C.
Plessl
, “
Breaking the exascale barrier for the electronic structure problem in ab initio molecular dynamics
,” arXiv:2205.12182 (
2022
).
169.
P. O.
Dral
,
O. A.
von Lilienfeld
, and
W.
Thiel
,
J. Chem. Theory Comput.
11
,
2120
(
2015
).
170.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
11
,
2087
(
2015
).
171.
H.
Li
,
C.
Collins
,
M.
Tanha
,
G. J.
Gordon
, and
D. J.
Yaron
,
J. Chem. Theory Comput.
14
,
5764
(
2018
).
172.
J. J.
Kranz
,
M.
Kubillus
,
R.
Ramakrishnan
,
O. A.
von Lilienfeld
, and
M.
Elstner
,
J. Chem. Theory Comput.
14
,
2341
(
2018
).
173.
N.
Goldman
,
B.
Aradi
,
R. K.
Lindsey
, and
L. E.
Fried
,
J. Chem. Theory Comput.
14
,
2652
(
2018
).
174.
P.
Zheng
,
R.
Zubatyuk
,
W.
Wu
,
O.
Isayev
, and
P. O.
Dral
,
Nat. Commun.
12
,
7022
(
2021
).
175.
G.
Zhou
,
N.
Lubbers
,
K.
Barros
,
S.
Tretiak
, and
B.
Nebgen
,
Proc. Natl. Acad. Sci. U. S. A.
119
,
2120333119
(
2022
).
176.
F.
Hu
,
F.
He
, and
D. J.
Yaron
, “
Semiempirical Hamiltonians learned from data can have accuracy comparable to density functional theory
,” arXiv: 2210.11682 (
2022
).

Supplementary Material

You do not currently have access to this content.