Linear and nonlinear electronic spectra provide an important tool to probe the absorption and transfer of electronic energy. Here, we introduce a pure state Ehrenfest approach to obtain accurate linear and nonlinear spectra that is applicable to systems with large numbers of excited states and complex chemical environments. We achieve this by representing the initial conditions as sums of pure states and unfolding multi-time correlation functions into the Schrödinger picture. By doing this, we show that one can obtain significant improvements in accuracy over the previously used projected Ehrenfest approach and that these benefits are particularly pronounced in cases where the initial condition is a coherence between excited states. While such initial conditions do not arise when calculating linear electronic spectra, they play a vital role in capturing multidimensional spectroscopies. We demonstrate the performance of our method by showing that it is able to quantitatively capture the exact linear, 2D electronic spectroscopy, and pump–probe spectra for a Frenkel exciton model in slow bath regimes and is even able to reproduce the main spectral features in fast bath regimes.

1.
N. S.
Ginsberg
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Acc. Chem. Res.
42
,
1352
(
2009
).
3.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
J. Phys. Chem. A
107
,
5258
(
2003
).
4.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallagher Faeder
, and
D. M.
Jonas
,
Chem. Phys. Lett.
297
,
307
(
1998
).
5.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
, Oxford series in optical and imaging sciences (
Oxford University Press
,
1995
).
6.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
,
625
(
2005
).
7.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
,
782
(
2007
).
8.
J.
Dostál
,
T.
Mančal
,
R.
Augulis
,
F.
Vácha
,
J.
Pšenčík
, and
D.
Zigmantas
,
J. Am. Chem. Soc.
134
,
11611
(
2012
).
9.
D.
Abramavicius
and
S.
Mukamel
,
J. Chem. Phys.
133
,
184501
(
2010
).
10.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
11.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Chem. A
111
,
9269
(
2007
).
12.
C.
Kreisbeck
,
T.
Kramer
,
M.
Rodríguez
, and
B.
Hein
,
J. Chem. Theory Comput.
7
,
2166
(
2011
).
13.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
132
,
024505
(
2010
).
14.
H.-D.
Meyer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
351
(
2011
).
15.
J.
Schulze
,
M. F.
Shibl
,
M. J.
Al-Marri
, and
O.
Kühn
,
Chem. Phys.
497
,
10
(
2017
).
16.
A. G.
Redfield
, in
Advances in Magnetic Resonance
(
Elsevier
,
1965
), pp.
1
32
.
18.
J. H.
Fetherolf
and
T. C.
Berkelbach
,
J. Chem. Phys.
147
,
244109
(
2017
).
19.
A.
Montoya-Castillo
,
T. C.
Berkelbach
, and
D. R.
Reichman
,
J. Chem. Phys.
143
,
194108
(
2015
).
20.
H.-D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
21.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
22.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
135
,
201101
(
2011
).
23.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
153
,
194110
(
2020
).
24.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
153
,
194109
(
2020
).
25.
J.
Provazza
,
F.
Segatta
,
M.
Garavelli
, and
D. F.
Coker
,
J. Chem. Theory Comput.
14
,
856
(
2018
).
26.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
156
,
024108
(
2022
).
27.
X.
Gao
and
E.
Geva
,
J. Chem. Theory Comput.
16
,
6491
(
2020
).
28.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
154
,
194110
(
2021
).
29.
30.
T. L. C.
Jansen
and
J.
Knoester
,
J. Phys. Chem. B
110
,
22910
(
2006
).
31.
C.
Liang
and
T. L. C.
Jansen
,
J. Chem. Theory Comput.
8
,
1706
(
2012
).
32.
H.
Torii
,
J. Phys. Chem. A
110
,
4822
(
2006
).
33.
T. L. C.
Jansen
,
W.
Zhuang
, and
S.
Mukamel
,
J. Chem. Phys.
121
,
10577
(
2004
).
34.
T. L. C.
Jansen
,
T.
Hayashi
,
W.
Zhuang
, and
S.
Mukamel
,
J. Chem. Phys.
123
,
114504
(
2005
).
35.
R.
Tempelaar
,
C. P.
van der Vegte
,
J.
Knoester
, and
T. L. C.
Jansen
,
J. Chem. Phys.
138
,
164106
(
2013
).
36.
C. P.
van der Vegte
,
A. G.
Dijkstra
,
J.
Knoester
, and
T. L. C.
Jansen
,
J. Phys. Chem. A
117
,
5970
(
2013
).
37.
A.
Montoya-Castillo
and
D. R.
Reichman
,
J. Chem. Phys.
144
,
184104
(
2016
).
38.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
39.
T. C.
Berkelbach
,
D. R.
Reichman
, and
T. E.
Markland
,
J. Chem. Phys.
136
,
034113
(
2012
).
40.
T.
Berkelbach
,
J.
Fetherolf
,
P.
Shih
, and
I. S.
Dunn
, berkelbach-group/pyrho v1.0,
2020
.
41.
W. C.
Pfalzgraff
,
A.
Montoya-Castillo
,
A.
Kelly
, and
T. E.
Markland
,
J. Chem. Phys.
150
,
244109
(
2019
).
42.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Theory Comput.
2
,
229
(
2006
).

Supplementary Material

You do not currently have access to this content.