Minimum energy path (MEP) search is a vital but often very time-consuming method to predict the transition states of versatile dynamic processes in chemistry, physics, and materials science. In this study, we reveal that the largely displaced atoms in the MEP structures maintain transient chemical bond lengths resembling those of the same type in the stable initial and final states. Based on this discovery, we propose an adaptive semirigid body approximation (ASBA) to construct a physically reasonable initial guess for the MEP structures, which can be further optimized by the nudged elastic band method. Examination of several distinct dynamical processes in bulk, on crystal surface, and through two-dimensional system shows that our transition state calculations based on the ASBA results are robust and significantly faster than those based on the popular linear interpolation and image-dependent pair potential methods.

1.
W.
Quapp
and
D.
Heidrich
, “
Analysis of the concept of minimum energy path on the potential energy surface of chemically reacting systems
,”
Theor. Chim. Acta
66
,
245
260
(
1984
).
2.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
3.
T. A.
Halgren
and
W. N.
Lipscomb
, “
The synchronous-transit method for determining reaction pathways and locating molecular transition states
,”
Chem. Phys. Lett.
49
,
225
232
(
1977
).
4.
S.
Smidstrup
,
A.
Pedersen
,
K.
Stokbro
, and
H.
Jónsson
, “
Improved initial guess for minimum energy path calculations
,”
J. Chem. Phys.
140
,
214106
(
2014
).
5.
Z.
Rong
,
D.
Kitchaev
,
P.
Canepa
,
W.
Huang
, and
G.
Ceder
, “
An efficient algorithm for finding the minimum energy path for cation migration in ionic materials
,”
J. Chem. Phys.
145
,
074112
(
2016
).
6.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, “
Classical and quantum dynamics in condensed phase simulations
,” in
Proceedings of the International School of Physics
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific Publishing
,
1998
), Chap. 16, pp.
385
404
.
7.
S.
Curtarolo
 et al., “
AFLOW: An automatic framework for high-throughput materials discovery
,”
Comput. Mater. Sci.
58
,
218
226
(
2012
).
8.
S. P.
Ong
 et al., “
Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
9.
Z.
Deng
,
Z.
Zhu
,
I.-H.
Chu
, and
S. P.
Ong
, “
Data-driven first-principles methods for the study and design of alkali superionic conductors
,”
Chem. Mater.
29
,
281
288
(
2017
).
10.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
, “
Optimization methods for finding minimum energy paths
,”
J. Chem. Phys.
128
,
134106
(
2008
).
11.
G.
Henkelman
and
H.
Jónsson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
12.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
13.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
14.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
15.
G.
Luo
,
S.
Yang
,
J.
Li
,
M.
Arjmand
,
I.
Szlufarska
,
A. S.
Brown
,
T. F.
Kuech
, and
D.
Morgan
, “
First-principles studies on molecular beam epitaxy growth of GaAs1−xBix
,”
Phys. Rev. B
92
,
035415
(
2015
).
16.
L.
Wang
and
G.
Luo
, “
Atomistic mechanism and long-term stability of using chlorinated graphdiyne film to reduce lithium dendrites in rechargeable lithium metal batteries
,”
Nano Lett.
21
,
7284
7290
(
2021
).
17.
G. F.
Luo
 et al., “
Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment
,”
Phys. Rev. B
84
,
075439
(
2011
).

Supplementary Material

You do not currently have access to this content.