Artificial intelligence-enhanced quantum mechanical method 1 (AIQM1) is a general-purpose method that was shown to achieve high accuracy for many applications with a speed close to its baseline semiempirical quantum mechanical (SQM) method ODM2*. Here, we evaluate the hitherto unknown performance of out-of-the-box AIQM1 without any refitting for reaction barrier heights on eight datasets, including a total of ∼24 thousand reactions. This evaluation shows that AIQM1’s accuracy strongly depends on the type of transition state and ranges from excellent for rotation barriers to poor for, e.g., pericyclic reactions. AIQM1 clearly outperforms its baseline ODM2* method and, even more so, a popular universal potential, ANI-1ccx. Overall, however, AIQM1 accuracy largely remains similar to SQM methods (and B3LYP/6-31G* for most reaction types) suggesting that it is desirable to focus on improving AIQM1 performance for barrier heights in the future. We also show that the built-in uncertainty quantification helps in identifying confident predictions. The accuracy of confident AIQM1 predictions is approaching the level of popular density functional theory methods for most reaction types. Encouragingly, AIQM1 is rather robust for transition state optimizations, even for the type of reactions it struggles with the most. Single-point calculations with high-level methods on AIQM1-optimized geometries can be used to significantly improve barrier heights, which cannot be said for its baseline ODM2* method.

1.
W. H.
Green
, “
Moving from postdictive to predictive kinetics in reaction engineering
,”
AIChE J.
66
,
e17059
(
2020
).
2.
P. O.
Dral
and
J.
Řezáč
, in
Quantum Chemistry in the Age of Machine Learning
, edited by
P. O.
Dral
(
Elsevier
,
Amsterdam, Netherlands
,
2023
).
3.
T.
Husch
,
A. C.
Vaucher
, and
M.
Reiher
, “
Semiempirical molecular orbital models based on the neglect of diatomic differential overlap approximation
,”
Int. J. Quantum Chem.
118
,
e25799
(
2018
).
4.
A. S.
Christensen
,
T.
Kubař
,
Q.
Cui
, and
M.
Elstner
, “
Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications
,”
Chem. Rev.
116
,
5301
5337
(
2016
).
5.
M.
Korth
and
W.
Thiel
, “
Benchmarking semiempirical methods for thermochemistry, kinetics, and noncovalent interactions: OMx methods are almost as accurate and robust as DFT-GGA methods for organic molecules
,”
J. Chem. Theory Comput.
7
,
2929
2936
(
2011
).
6.
P. O.
Dral
,
X.
Wu
,
L.
Spörkel
,
A.
Koslowski
, and
W.
Thiel
, “
Semiempirical quantum-chemical orthogonalization-corrected methods: Benchmarks for ground-state properties
,”
J. Chem. Theory Comput.
12
,
1097
1120
(
2016
).
7.
P. O.
Dral
,
X.
Wu
, and
W.
Thiel
, “
Semiempirical quantum-chemical methods with orthogonalization and dispersion corrections
,”
J. Chem. Theory Comput.
15
,
1743
1760
(
2019
).
8.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
,
1652
1671
(
2019
).
9.
T.
Clark
and
J. J. P.
Stewart
, in
Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology
, edited by
J. R.
Reimers
(
John Wiley and Sons, Inc.
,
Chichester
,
2011
), pp.
259
286
.
10.
N.
Lima
,
G.
Rocha
,
R.
Freire
, and
A.
Simas
, “
RM1 semiempirical model: Chemistry, pharmaceutical research, molecular biology and materials science
,”
J. Braz. Chem. Soc.
30
,
683
716
(
2018
).
11.
M. H.
Rasmussen
and
J. H.
Jensen
, “
Fast and automatic estimation of transition state structures using tight binding quantum chemical calculations
,”
PeerJ Phys. Chem.
2
,
e15
(
2020
).
12.
J. C.
Kromann
,
A. S.
Christensen
,
Q.
Cui
, and
J. H.
Jensen
, “
Towards a barrier height benchmark set for biologically relevant systems
,”
PeerJ
4
,
e1994
(
2016
).
13.
J. J. P.
Stewart
, “
Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters
,”
J. Mol. Model.
19
,
1
32
(
2013
).
14.
M.
Koerstz
,
M. H.
Rasmussen
, and
J. H.
Jensen
, “
Fast and automated identification of reactions with low barriers: The decomposition of 3-hydroperoxypropanal
,”
SciPost Chem.
1
,
003
(
2021
).
15.
M. P.
Haag
,
A. C.
Vaucher
,
M.
Bosson
,
S.
Redon
, and
M.
Reiher
, “
Interactive chemical reactivity exploration
,”
ChemPhysChem
15
,
3301
3319
(
2014
).
16.
K.
Matsubara
,
L.-C.
Chou
,
H.
Amii
, and
R.
Kakuchi
, “
Fast-track computational access to reaction mechanisms provides comprehensive insights into aminolysis postpolymerization modification reactions
,”
Mol. Syst. Des. Eng.
7
,
1263
1276
(
2022
).
17.
D.
Kuntz
and
A. K.
Wilson
, “
Machine learning, artificial intelligence, and chemistry: How smart algorithms are reshaping simulation and the laboratory
,”
Pure Appl. Chem.
94
,
1019
1054
(
2022
).
18.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
,
547
555
(
2018
).
19.
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Exploring chemical compound space with quantum-based machine learning
,”
Nat. Rev. Chem.
4
,
347
358
(
2020
).
20.
S.
Manzhos
, “
Machine learning for the solution of the Schrödinger equation
,”
Mach. Learn.: Sci. Technol.
1
,
013002
(
2020
).
21.
P. O.
Dral
, “
Quantum chemistry in the age of machine learning
,”
J. Phys. Chem. Lett.
11
,
2336
2347
(
2020
).
22.
J.
Zhang
,
Y.-K.
Lei
,
Z.
Zhang
,
J.
Chang
,
M.
Li
,
X.
Han
,
L.
Yang
,
Y. I.
Yang
, and
Y. Q.
Gao
, “
A perspective on deep learning for molecular modeling and simulations
,”
J. Phys. Chem. A
124
,
6745
6763
(
2020
).
23.
J.
Westermayr
,
M.
Gastegger
,
K. T.
Schütt
, and
R. J.
Maurer
, “
Perspective on integrating machine learning into computational chemistry and materials science
,”
J. Chem. Phys.
154
,
230903
(
2021
).
24.
T.
Mueller
,
A.
Hernandez
, and
C.
Wang
, “
Machine learning for interatomic potential models
,”
J. Chem. Phys.
152
,
050902
(
2020
).
25.
Z. J.
Baum
,
X.
Yu
,
P. Y.
Ayala
,
Y.
Zhao
,
S. P.
Watkins
, and
Q.
Zhou
, “
Artificial intelligence in chemistry: Current trends and future directions
,”
J. Chem. Inf. Model.
61
,
3197
3212
(
2021
).
26.
T.
Zubatiuk
and
O.
Isayev
, “
Development of multimodal machine learning potentials: Toward a physics-aware artificial intelligence
,”
Acc. Chem. Res.
54
,
1575
1585
(
2021
).
27.
K. T.
Schütt
,
S.
Chmiela
,
O. A.
von Lilienfeld
,
A.
Tkatchenko
,
K.
Tsuda
, and
K.-R.
Müller
,
Machine Learning Meets Quantum Physics
(
Springer
,
Cham
,
2020
).
28.
P. O.
Dral
,
Quantum Chemistry in the Age of Machine Learning
(
Elsevier
,
Amsterdam, Netherlands
,
2023
).
29.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
, “
Gaussian process regression for materials and molecules
,”
Chem. Rev.
121
,
10073
10141
(
2021
).
30.
J.
Behler
, “
Four generations of high-dimensional neural network potentials
,”
Chem. Rev.
121
,
10037
10072
(
2021
).
31.
K. A.
Spiekermann
,
L.
Pattanaik
, and
W. H.
Green
, “
Fast predictions of reaction barrier heights: Toward coupled-cluster accuracy
,”
J. Phys. Chem. A
126
,
3976
3986
(
2022
).
32.
T.
Lewis-Atwell
,
P. A.
Townsend
, and
M. N.
Grayson
, “
Machine learning activation energies of chemical reactions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1593
(
2022
).
33.
X.
García-Andrade
,
P. G.
Tahoces
,
J.
Pérez-Ríos
, and
E. M.
Núñez
, “
Barrier height prediction by machine learning correction of semiempirical calculations
,” arXiv:2208.02289v1 [physics.chem-ph] (
2022
).
34.
S.
Vargas
,
M. R.
Hennefarth
,
Z.
Liu
, and
A. N.
Alexandrova
, “
Machine learning to predict Diels–Alder reaction barriers from the reactant state electron density
,”
J. Chem. Theory Comput.
17
,
6203
6213
(
2021
).
35.
I.
Ismail
,
C.
Robertson
, and
S.
Habershon
, “
Successes and challenges in using machine-learned activation energies in kinetic simulations
,”
J. Chem. Phys.
157
,
014109
(
2022
).
36.
F.
Palazzesi
,
M. R.
Hermann
,
M. A.
Grundl
,
A.
Pautsch
,
D.
Seeliger
,
C. S.
Tautermann
, and
A.
Weber
, “
BIreactive: A machine-learning model to estimate covalent warhead reactivity
,”
J. Chem. Inf. Model.
60
,
2915
2923
(
2020
).
37.
C. A.
Grambow
,
L.
Pattanaik
, and
W. H.
Green
, “
Deep learning of activation energies
,”
J. Phys. Chem. Lett.
11
,
2992
2997
(
2020
).
38.
P.
Friederich
,
G.
dos Passos Gomes
,
R.
De Bin
,
A.
Aspuru-Guzik
, and
D.
Balcells
, “
Machine learning dihydrogen activation in the chemical space surrounding Vaska’s complex
,”
Chem. Sci.
11
,
4584
4601
(
2020
).
39.
T.
Bucko
,
M.
Gesvandtnerova
, and
D.
Rocca
, “
Ab initio calculations of free energy of activation at multiple electronic structure levels made affordable: An effective combination of perturbation theory and machine learning
,”
J. Chem. Theory Comput.
16
,
6049
6060
(
2020
).
40.
M.
Bragato
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
, “
Data enhanced Hammett-equation: Reaction barriers in chemical space
,”
Chem. Sci.
11
,
11859
11868
(
2020
).
41.
J.
Xu
,
X.-M.
Cao
, and
P.
Hu
, “
Improved prediction for the methane activation mechanism on rutile metal oxides by a machine learning model with geometrical descriptors
,”
J. Phys. Chem. C
123
,
28802
28810
(
2019
).
42.
B.
von der Esch
,
J. C. B.
Dietschreit
,
L. D. M.
Peters
, and
C.
Ochsenfeld
, “
Finding reactive configurations: A machine learning approach for estimating energy barriers applied to sirtuin 5
,”
J. Chem. Theory Comput.
15
,
6660
6667
(
2019
).
43.
A. R.
Singh
,
B. A.
Rohr
,
J. A.
Gauthier
, and
J. K.
Norskov
, “
Predicting chemical reaction barriers with a machine learning model
,”
Catal. Lett.
149
,
234
2354
(
2019
).
44.
M.
Glavatskikh
,
T.
Madzhidov
,
D.
Horvath
,
R.
Nugmanov
,
T.
Gimadiev
,
D.
Malakhova
,
G.
Marcou
, and
A.
Varnek
, “
Predictive models for kinetic parameters of cycloaddition reactions
,”
Mol. Inf.
38
,
e1800077
(
2019
).
45.
K.
Takahashi
and
I.
Miyazato
, “
Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning
,”
J. Comput. Chem.
39
,
2405
2408
(
2018
).
46.
S.
Choi
,
Y.
Kim
,
J. W.
Kim
,
Z.
Kim
, and
W. Y.
Kim
, “
Feasibility of activation energy prediction of gas-phase reactions by machine learning
,”
Chem. Eur. J.
24
,
12354
12358
(
2018
).
47.
E.
Komp
and
S.
Valleau
, “
Machine learning quantum reaction rate constants
,”
J. Phys. Chem. A
124
,
8607
8613
(
2020
).
48.
P. L.
Houston
,
A.
Nandi
, and
J. M.
Bowman
, “
A machine learning approach for prediction of rate constants
,”
J. Phys. Chem. Lett.
10
,
5250
5258
(
2019
).
49.
T.
Gimadiev
,
T.
Madzhidov
,
I.
Tetko
,
R.
Nugmanov
,
I.
Casciuc
,
O.
Klimchuk
,
A.
Bodrov
,
P.
Polishchuk
,
I.
Antipin
, and
A.
Varnek
, “
Bimolecular nucleophilic substitution reactions: Predictive models for rate constants and molecular reaction pairs analysis
,”
Mol. Inf.
38
,
e1800104
(
2019
).
50.
T. I.
Madzhidov
,
A. V.
Bodrov
,
T. R.
Gimadiev
,
R. I.
Nugmanov
,
I. S.
Antipin
, and
A. A.
Varnek
, “
Structure–reactivity relationship in bimolecular elimination reactions based on the condensed graph of a reaction
,”
J. Struct. Chem.
56
,
1227
1234
(
2015
).
51.
T.
Stuyver
and
C. W.
Coley
, “
Quantum chemistry-augmented neural networks for reactivity prediction: Performance, generalizability and explainability
,”
J. Chem. Phys.
156
,
084104
(
2022
).
52.
F.
Sandfort
,
F.
Strieth-Kalthoff
,
M.
Kühnemund
,
C.
Beecks
, and
F.
Glorius
, “
A structure-based platform for predicting chemical reactivity
,”
Chem
6
,
1379
1390
(
2020
).
53.
J. A.
Kammeraad
,
J.
Goetz
,
E. A.
Walker
,
A.
Tewari
, and
P. M.
Zimmerman
, “
What does the machine learn? Knowledge representations of chemical reactivity
,”
J. Chem. Inf. Model.
60
,
1290
1301
(
2020
).
54.
P.
Schwaller
,
A. C.
Vaucher
,
T.
Laino
, and
J.-L.
Reymond
, “
Prediction of chemical reaction yields using deep learning
,”
Mach. Learn.: Sci. Technol.
2
,
015016
(
2021
).
55.
E.
Shim
,
J. A.
Kammeraad
,
Z.
Xu
,
A.
Tewari
,
T.
Cernak
, and
P. M.
Zimmerman
, “
Predicting reaction conditions from limited data through active transfer learning
,”
Chem. Sci.
13
,
6655
6668
(
2022
).
56.
S.
Hu
and
W.-X.
Li
, “
Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts
,”
Science
374
,
1360
1365
(
2021
).
57.
M.
Kondo
,
H. D. P.
Wathsala
,
M. S. H.
Salem
,
K.
Ishikawa
,
S.
Hara
,
T.
Takaai
,
T.
Washio
,
H.
Sasai
, and
S.
Takizawa
, “
Bayesian optimization-driven parallel-screening of multiple parameters for the flow synthesis of biaryl compounds
,”
Commun. Chem.
5
,
148
(
2022
).
58.
E.
Walker
,
J.
Kammeraad
,
J.
Goetz
,
M. T.
Robo
,
A.
Tewari
, and
P. M.
Zimmerman
, “
Learning to predict reaction conditions: Relationships between solvent, molecular structure, and catalyst
,”
J. Chem. Inf. Model.
59
,
3645
3654
(
2019
).
59.
H.
Gao
,
T. J.
Struble
,
C. W.
Coley
,
Y.
Wang
,
W. H.
Green
, and
K. F.
Jensen
, “
Using machine learning to predict suitable conditions for organic reactions
,”
ACS Cent. Sci.
4
,
1465
1476
(
2018
).
60.
G.
Marcou
,
J.
Aires de Sousa
,
D. A. R. S.
Latino
,
A.
de Luca
,
D.
Horvath
,
V.
Rietsch
, and
A.
Varnek
, “
Expert system for predicting reaction conditions: The Michael reaction case
,”
J. Chem. Inf. Model.
55
,
239
250
(
2015
).
61.
B.
Meyer
,
B.
Sawatlon
,
S.
Heinen
,
O. A.
von Lilienfeld
, and
C.
Corminboeuf
, “
Machine learning meets volcano plots: Computational discovery of cross-coupling catalysts
,”
Chem. Sci.
9
,
7069
7077
(
2018
).
62.
J.
Chen
,
T.
Jin
,
Y.
Jiang
,
T.
Shen
,
M.
Yang
, and
Z.-N.
Chen
, “
Toward accurate and efficient dynamic computational strategy for heterogeneous catalysis: Temperature-dependent thermodynamics and kinetics for the chemisorbed on-surface CO
,”
Chin. Chem. Lett.
33
,
4936
4942
(
2022
).
63.
D. T.
Ahneman
,
J. G.
Estrada
,
S.
Lin
,
S. D.
Dreher
, and
A. G.
Doyle
, “
Predicting reaction performance in C–N cross-coupling using machine learning
,”
Science
360
,
186
190
(
2018
).
64.
S. M.
Maley
,
D.-H.
Kwon
,
N.
Rollins
,
J. C.
Stanley
,
O. L.
Sydora
,
S. M.
Bischof
, and
D. H.
Ess
, “
Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization
,”
Chem. Sci.
11
,
9665
9674
(
2020
).
65.
Z.
Lu
,
Z. W.
Chen
, and
C. V.
Singh
, “
Neural network-assisted development of high-entropy alloy catalysts: Decoupling ligand and coordination effects
,”
Matter
3
,
1318
1333
(
2020
).
66.
N.
Artrith
,
Z.
Lin
, and
J. G.
Chen
, “
Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning
,”
ACS Catal.
10
,
9438
9444
(
2020
).
67.
A. F.
Zahrt
,
J. J.
Henle
,
B. T.
Rose
,
Y.
Wang
,
W. T.
Darrow
, and
S. E.
Denmark
, “
Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning
,”
Science
363
,
eaau5631
(
2019
).
68.
J. P.
Reid
and
M. S.
Sigman
, “
Comparing quantitative prediction methods for the discovery of small-molecule chiral catalysts
,”
Nat. Rev. Chem.
2
,
290
305
(
2018
).
69.
G. H.
Gu
,
C.
Choi
,
Y.
Lee
,
A. B.
Situmorang
,
J.
Noh
,
Y. H.
Kim
, and
Y.
Jung
, “
Progress in computational and machine-learning methods for heterogeneous small-molecule activation
,”
Adv. Mater.
32
,
e1907865
(
2020
).
70.
Y.
Guan
,
C. W.
Coley
,
H.
Wu
,
D.
Ranasinghe
,
E.
Heid
,
T. J.
Struble
,
L.
Pattanaik
,
W. H.
Green
, and
K. F.
Jensen
, “
Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors
,”
Chem. Sci.
12
,
2198
2208
(
2021
).
71.
X.
Li
,
S. Q.
Zhang
,
L. C.
Xu
, and
X.
Hong
, “
Predicting regioselectivity in radical C–H functionalization of heterocycles through machine learning
,”
Angew. Chem., Int. Ed.
59
,
13253
13259
(
2020
).
72.
A.
Tomberg
,
M. J.
Johansson
, and
P.-O.
Norrby
, “
A predictive tool for electrophilic aromatic substitutions using machine learning
,”
J. Org. Chem.
84
,
4695
4703
(
2019
).
73.
P.-L.
Kang
,
C.
Shang
, and
Z.-P.
Liu
, “
Glucose to 5-hydroxymethylfurfural: Origin of site-selectivity resolved by machine learning based reaction sampling
,”
J. Am. Chem. Soc.
141
,
20525
20536
(
2019
).
74.
W.
Beker
,
E. P.
Gajewska
,
T.
Badowski
, and
B. A.
Grzybowski
, “
Prediction of major regio-, site-, and diastereoisomers in Diels–Alder reactions by using machine-learning: The importance of physically meaningful descriptors
,”
Angew. Chem., Int. Ed.
58
,
4515
4519
(
2019
).
75.
J. C.
Kromann
,
J. H.
Jensen
,
M.
Kruszyk
,
M.
Jessing
, and
M.
Jørgensen
, “
Fast and accurate prediction of the regioselectivity of electrophilic aromatic substitution reactions
,”
Chem. Sci.
9
,
660
665
(
2018
).
76.
M.
Das
,
P.
Sharma
, and
R. B.
Sunoj
, “
Machine learning studies on asymmetric relay Heck reaction–potential avenues for reaction development
,”
J. Chem. Phys.
156
,
114303
(
2022
).
77.
S.
Bray
and
S.
Wolf
, “
Non-equilibrium biomolecular simulation pathway analysis assisted by machine learning and graph methods
,” arXiv:2205.09894v1 [physics.bio-ph] (
2022
).
78.
S.
Zhang
,
M.
Makoś
,
R.
Jadrich
,
E.
Kraka
,
K.
Barros
,
B.
Nebgen
,
S.
Tretiak
,
O.
Isayev
,
N.
Lubbers
,
R.
Messerly
, and
J.
Smith
, “
Exploring the frontiers of chemistry with a general reactive machine learning potential
,” ChemRxiv:10.26434/chemrxiv-2022-15ct6-v2 (
2022
) (Cambridge: Cambridge Open Engage). This content is a preprint and has not been peer-reviewed.
79.
S.
Takamoto
,
C.
Shinagawa
,
D.
Motoki
,
K.
Nakago
,
W.
Li
,
I.
Kurata
,
T.
Watanabe
,
Y.
Yayama
,
H.
Iriguchi
,
Y.
Asano
,
T.
Onodera
,
T.
Ishii
,
T.
Kudo
,
H.
Ono
,
R.
Sawada
,
R.
Ishitani
,
M.
Ong
,
T.
Yamaguchi
,
T.
Kataoka
,
A.
Hayashi
,
N.
Charoenphakdee
, and
T.
Ibuka
, “
Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements
,”
Nat. Commun.
13
,
2991
(
2022
).
80.
M.
Schreiner
,
A.
Bhowmik
,
T.
Vegge
,
J.
Busk
, and
O.
Winther
, “
Transition1x-a dataset for building generalizable reactive machine learning potentials
,”
Sci Data.
9
,
779
(
2022
).
81.
Y.-F.
Shi
,
P.-L.
Kang
,
C.
Shang
, and
Z.-P.
Liu
, “
Methanol synthesis from CO2/CO mixture on Cu–Zn catalysts from microkinetics-guided machine learning pathway search
,”
J. Am. Chem. Soc.
144
,
13401
13414
(
2022
).
82.
J.
Neumann
and
N.
Schwierz
, “
Artificial intelligence resolves kinetic pathways of magnesium binding to RNA
,”
J. Chem. Theory Comput.
18
,
1202
1212
(
2022
).
83.
A.
Mondal
,
D.
Kussainova
,
S.
Yue
, and
A. Z.
Panagiotopoulos
, “
Modeling chemical reactions in alkali carbonate–hydroxide electrolytes with deep learning potentials
,”
J. Chem. Theory Comput.
(published online
2022
).
84.
Q.
Chu
,
K. H.
Luo
, and
D.
Chen
, “
Exploring complex reaction networks using neural network-based molecular dynamics simulation
,”
J. Phys. Chem. Lett.
13
,
4052
4057
(
2022
).
85.
S.
Chen
and
Y.
Jung
, “
Deep retrosynthetic reaction prediction using local reactivity and global attention
,”
JACS Au
1
,
1612
1620
(
2021
).
86.
S. J.
Ang
,
W.
Wang
,
D.
Schwalbe-Koda
,
S.
Axelrod
, and
R.
Gómez-Bombarelli
, “
Active learning accelerates ab initio molecular dynamics on reactive energy surfaces
,”
Chem
7
,
738
751
(
2021
).
87.
J.
Zeng
,
L.
Cao
,
M.
Xu
,
T.
Zhu
, and
J. Z. H.
Zhang
, “
Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation
,”
Nat. Commun.
11
,
5713
(
2020
).
88.
A.
Thakkar
,
N.
Selmi
,
J.-L.
Reymond
,
O.
Engkvist
, and
E. J.
Bjerrum
, “‘
Ring breaker’: Neural network driven synthesis prediction of the ring system chemical space
,”
J. Med. Chem.
63
,
8791
8808
(
2020
).
89.
M. H. S.
Segler
,
M.
Preuss
, and
M. P.
Waller
, “
Planning chemical syntheses with deep neural networks and symbolic AI
,”
Nature
555
,
604
610
(
2018
).
90.
J. M.
Granda
,
L.
Donina
,
V.
Dragone
,
D.-L.
Long
, and
L.
Cronin
, “
Controlling an organic synthesis robot with machine learning to search for new reactivity
,”
Nature
559
,
377
381
(
2018
).
91.
Z. W.
Ulissi
,
A. J.
Medford
,
T.
Bligaard
, and
J. K.
Nørskov
, “
To address surface reaction network complexity using scaling relations machine learning and DFT calculations
,”
Nat. Commun.
8
,
14621
(
2017
).
92.
D. H.
Nguyen
and
K.
Tsuda
, “
Generating reaction trees with cascaded variational autoencoders
,”
J. Chem. Phys.
156
,
044117
(
2022
).
93.
C. W.
Coley
,
W.
Jin
,
L.
Rogers
,
T. F.
Jamison
,
T. S.
Jaakkola
,
W. H.
Green
,
R.
Barzilay
, and
K. F.
Jensen
, “
A graph-convolutional neural network model for the prediction of chemical reactivity
,”
Chem. Sci.
10
,
370
377
(
2019
).
94.
P.
Schwaller
,
D.
Probst
,
A. C.
Vaucher
,
V. H.
Nair
,
D.
Kreutter
,
T.
Laino
, and
J.-L.
Reymond
, “
Mapping the space of chemical reactions using attention-based neural networks
,”
Nat. Mach. Intell.
3
,
144
152
(
2021
).
95.
W.
Bort
,
I. I.
Baskin
,
T.
Gimadiev
,
A.
Mukanov
,
R.
Nugmanov
,
P.
Sidorov
,
G.
Marcou
,
D.
Horvath
,
O.
Klimchuk
,
T.
Madzhidov
, and
A.
Varnek
, “
Discovery of novel chemical reactions by deep generative recurrent neural network
,”
Sci. Rep.
11
,
3178
(
2021
).
96.
X.
Liu
,
T.
Zhang
,
T.
Yang
,
X.
Liu
,
X.
Song
,
Y.
Yang
,
N.
Li
,
G.-M.
Rignanese
,
Y.
Li
, and
X.
Wen
, “
Solving chemistry problems via an end-to-end approach: A proof of concept
,”
J. Phys. Chem. A
124
,
8866
8873
(
2020
).
97.
M.
Fujinami
,
J.
Seino
, and
H.
Nakai
, “
Quantum chemical reaction prediction method based on machine learning
,”
Bull. Chem. Soc. Jpn.
93
,
685
693
(
2020
).
98.
P.
Schwaller
,
T.
Laino
,
T.
Gaudin
,
P.
Bolgar
,
C. A.
Hunter
,
C.
Bekas
, and
A. A.
Lee
, “
Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction
,”
ACS Cent. Sci.
5
,
1572
1583
(
2019
).
99.
P.
Schwaller
,
T.
Gaudin
,
D.
Lányi
,
C.
Bekas
, and
T.
Laino
, “‘
Found in translation’: Predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
,”
Chem. Sci.
9
,
6091
6098
(
2018
).
100.
Y.
Kim
,
J. W.
Kim
,
Z.
Kim
, and
W. Y.
Kim
, “
Efficient prediction of reaction paths through molecular graph and reaction network analysis
,”
Chem. Sci.
9
,
825
835
(
2018
).
101.
D.
Fooshee
,
A.
Mood
,
E.
Gutman
,
M.
Tavakoli
,
G.
Urban
,
F.
Liu
,
N.
Huynh
,
D.
Van Vranken
, and
P.
Baldi
, “
Deep learning for chemical reaction prediction
,”
Mol. Syst. Des. Eng.
3
,
442
452
(
2018
).
102.
G.
Skoraczynski
,
P.
Dittwald
,
B.
Miasojedow
,
S.
Szymkuc
,
E. P.
Gajewska
,
B. A.
Grzybowski
, and
A.
Gambin
, “
Predicting the outcomes of organic reactions via machine learning: Are current descriptors sufficient?
,”
Sci. Rep.
7
,
3582
(
2017
).
103.
M. H. S.
Segler
and
M. P.
Waller
, “
Neural-symbolic machine learning for retrosynthesis and reaction prediction
,”
Chem. Eur. J.
23
,
5966
5971
(
2017
).
104.
B.
Liu
,
B.
Ramsundar
,
P.
Kawthekar
,
J.
Shi
,
J.
Gomes
,
Q.
Luu Nguyen
,
S.
Ho
,
J.
Sloane
,
P.
Wender
, and
V.
Pande
, “
Retrosynthetic reaction prediction using neural sequence-to-sequence models
,”
ACS Cent. Sci.
3
,
1103
1113
(
2017
).
105.
C. W.
Coley
,
R.
Barzilay
,
T. S.
Jaakkola
,
W. H.
Green
, and
K. F.
Jensen
, “
Prediction of organic reaction outcomes using machine learning
,”
ACS Cent. Sci.
3
,
434
443
(
2017
).
106.
J. N.
Wei
,
D.
Duvenaud
, and
A.
Aspuru-Guzik
, “
Neural networks for the prediction of organic chemistry reactions
,”
ACS Cent. Sci.
2
,
725
732
(
2016
).
107.
P.
Sadowski
,
D.
Fooshee
,
N.
Subrahmanya
, and
P.
Baldi
, “
Synergies between quantum mechanics and machine learning in reaction prediction
,”
J. Chem. Inf. Model.
56
,
2125
2128
(
2016
).
108.
M.
Gastegger
and
P.
Marquetand
, “
High-dimensional neural network potentials for organic reactions and an improved training algorithm
,”
J. Chem. Theory Comput.
11
,
2187
2198
(
2015
).
109.
M. A.
Kayala
and
P.
Baldi
, “
Reaction predictor: Prediction of complex chemical reactions at the mechanistic level using machine learning
,”
J. Chem. Inf. Model.
52
,
2526
2540
(
2012
).
110.
M. A.
Kayala
,
C.-A.
Azencott
,
J. H.
Chen
, and
P.
Baldi
, “
Learning to predict chemical reactions
,”
J. Chem. Inf. Model.
51
,
2209
2222
(
2011
).
111.
R.
Körner
and
J.
Apostolakis
, “
Automatic determination of reaction mappings and reaction center information. 1. The imaginary transition state energy approach
,”
J. Chem. Inf. Model.
48
,
1181
1189
(
2008
).
112.
G. M.
Ghiandoni
,
M. J.
Bodkin
,
B.
Chen
,
D.
Hristozov
,
J. E. A.
Wallace
,
J.
Webster
, and
V. J.
Gillet
, “
Development and application of a data-driven reaction classification model: Comparison of an electronic lab notebook and medicinal chemistry literature
,”
J. Chem. Inf. Model.
59
,
4167
4187
(
2019
).
113.
A.
Denzel
and
J.
Kästner
, “
Gaussian process regression for transition state search
,”
J. Chem. Theory Comput.
14
,
5777
5786
(
2018
).
114.
R.
Jackson
,
W.
Zhang
, and
J.
Pearson
, “
TSNet: Predicting transition state structures with tensor field networks and transfer learning
,”
Chem. Sci.
12
,
10022
10040
(
2021
).
115.
S.
Heinen
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
, “
Transition state search and geometry relaxation throughout chemical compound space with quantum machine learning
,”
J. Chem. Phys.
157
,
221102
(
2022
).
116.
I.
Fdez Galván
,
G.
Raggi
, and
R.
Lindh
, “
Restricted-variance constrained, reaction path, and transition state molecular optimizations using gradient-enhanced kriging
,”
J. Chem. Theory Comput.
17
,
571
582
(
2021
).
117.
D.
Chen
,
C.
Shang
, and
Z.-P.
Liu
, “
Automated search for optimal surface phases (ASOPs) in grand canonical ensemble powered by machine learning
,”
J. Chem. Phys.
156
,
094104
(
2022
).
118.
L.
Pattanaik
,
J. B.
Ingraham
,
C. A.
Grambow
, and
W. H.
Green
, “
Generating transition states of isomerization reactions with deep learning
,”
Phys. Chem. Chem. Phys.
22
,
23618
23626
(
2020
).
119.
A. A.
Peterson
, “
Acceleration of saddle-point searches with machine learning
,”
J. Chem. Phys.
145
,
074106
(
2016
).
120.
Z. D.
Pozun
,
K.
Hansen
,
D.
Sheppard
,
M.
Rupp
,
K.-R.
Müller
, and
G.
Henkelman
, “
Optimizing transition states via kernel-based machine learning
,”
J. Chem. Phys.
136
,
174101
(
2012
).
121.
K.
Jorner
,
A.
Tomberg
,
C.
Bauer
,
C.
Sköld
, and
P.-O.
Norrby
, “
Organic reactivity from mechanism to machine learning
,”
Nat. Rev. Chem.
5
,
240
255
(
2021
).
122.
S.
Stocker
,
G.
Csányi
,
K.
Reuter
, and
J. T.
Margraf
, “
Machine learning in chemical reaction space
,”
Nat. Commun.
11
,
5505
(
2020
).
123.
Z.
Wang
,
W.
Zhao
,
G.-F.
Hao
, and
B.-A.
Song
, “
Automated synthesis: Current platforms and further needs
,”
Drug Discovery Today
25
,
2006
2011
(
2020
).
124.
F.
Strieth-Kalthoff
,
F.
Sandfort
,
M. H. S.
Segler
, and
F.
Glorius
, “
Machine learning the ropes: Principles, applications and directions in synthetic chemistry
,”
Chem. Soc. Rev.
49
,
6154
6168
(
2020
).
125.
P. S.
Gromski
,
A. B.
Henson
,
J. M.
Granda
, and
L.
Cronin
, “
How to explore chemical space using algorithms and automation
,”
Nat. Rev. Chem.
3
,
119
128
(
2019
).
126.
A. F.
de Almeida
,
R.
Moreira
, and
T.
Rodrigues
, “
Synthetic organic chemistry driven by artificial intelligence
,”
Nat. Rev. Chem.
3
,
589
604
(
2019
).
127.
O.
Engkvist
,
P.-O.
Norrby
,
N.
Selmi
,
Y.-h.
Lam
,
Z.
Peng
,
E. C.
Sherer
,
W.
Amberg
,
T.
Erhard
, and
L. A.
Smyth
, “
Computational prediction of chemical reactions: Current status and outlook
,”
Drug Discovery Today
23
,
1203
1218
(
2018
).
128.
C. W.
Coley
,
W. H.
Green
, and
K. F.
Jensen
, “
Machine learning in computer-aided synthesis planning
,”
Acc. Chem. Res.
51
,
1281
1289
(
2018
).
129.
Z.
Qiao
,
A. S.
Christensen
,
M.
Welborn
,
F. R.
Manby
,
A.
Anandkumar
, and
T. F.
Miller
, “
Informing geometric deep learning with electronic interactions to accelerate quantum chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2205221119
(
2022
).
130.
P.
Zheng
,
R.
Zubatyuk
,
W.
Wu
,
O.
Isayev
, and
P. O.
Dral
, “
Artificial intelligence-enhanced quantum chemical method with broad applicability
,”
Nat. Commun.
12
,
7022
(
2021
).
131.
A. S.
Christensen
,
S. K.
Sirumalla
,
Z.
Qiao
,
M. B.
O’Connor
,
D. G. A.
Smith
,
F.
Ding
,
P. J.
Bygrave
,
A.
Anandkumar
,
M.
Welborn
,
F. R.
Manby
, and
T. F.
Miller
 III
, “
OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy
,”
J. Chem. Phys.
155
,
204103
(
2021
).
132.
C.
Devereux
,
J. S.
Smith
,
K. K.
Huddleston
,
K.
Barros
,
R.
Zubatyuk
,
O.
Isayev
, and
A. E.
Roitberg
, “
Extending the applicability of the ANI deep learning molecular potential to sulfur and halogens
,”
J. Chem. Theory Comput.
16
,
4192
4202
(
2020
).
133.
J. S.
Smith
,
B. T.
Nebgen
,
R.
Zubatyuk
,
N.
Lubbers
,
C.
Devereux
,
K.
Barros
,
S.
Tretiak
,
O.
Isayev
, and
A. E.
Roitberg
, “
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
,”
Nat. Commun.
10
,
2903
(
2019
).
134.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
135.
M.
Schreiner
,
A.
Bhowmik
,
T.
Vegge
,
P. B.
Jørgensen
, and
O.
Winther
, “
NeuralNEB—neural networks can find reaction paths fast
,”
Mach. Learn. Sci. Technol.
3
,
045022
(
2022
).
136.
P.
Zheng
,
W.
Yang
,
W.
Wu
,
O.
Isayev
, and
P. O.
Dral
, “
Toward chemical accuracy in predicting enthalpies of formation with general-purpose data-driven methods
,”
J. Phys. Chem. Lett.
13
,
3479
3491
(
2022
).
137.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
, “
Big data meets quantum chemistry approximations: The Δ-machine learning approach
,”
J. Chem. Theory Comput.
11
,
2087
2096
(
2015
).
138.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
139.
Y.
Zhao
and
D. G.
Truhlar
, “
Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
4
,
1849
1868
(
2008
).
140.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
141.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
142.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian-basis sets for atoms Li to Kr
,”
J. Chem. Phys.
97
,
2571
2577
(
1992
).
143.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr
,”
J. Chem. Phys.
100
,
5829
5835
(
1994
).
144.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
145.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
146.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
147.
V. K.
Prasad
,
Z.
Pei
,
S.
Edelmann
,
A.
Otero-de-la-Roza
, and
G. A.
DiLabio
, “
BH9, a new comprehensive benchmark data set for barrier heights and reaction energies: Assessment of density functional approximations and basis set incompleteness potentials
,”
J. Chem. Theory Comput.
18
,
151
166
(
2022
);
[PubMed]
V. K.
Prasad
,
Z.
Pei
,
S.
Edelmann
,
A.
Otero-de-la-Roza
, and
G. A.
DiLabio
J. Chem. Theory Comput.
18
,
4041
4044
(
2022
) (Correction).
[PubMed]
148.
K.
Spiekermann
,
L.
Pattanaik
, and
W. H.
Green
, “
High accuracy barrier heights, enthalpies, and rate coefficients for chemical reactions
,”
Sci. Data
9
,
417
(
2022
).
149.
P.
Pernot
, “
Prediction uncertainty validation for computational chemists
,”
J. Chem. Phys.
157
,
144103
(
2022
).
150.
G.
Piccini
,
M.
Alessio
, and
J.
Sauer
, “
Ab initio calculation of rate constants for molecule–surface reactions with chemical accuracy
,”
Angew. Chem., Int. Ed.
55
,
5235
5237
(
2016
).
151.
Y.
Freund
,
H. S.
Seung
,
E.
Shamir
, and
N.
Tishby
, “
Selective sampling using the query by committee algorithm
,”
Mach. Learn.
28
,
133
168
(
1997
).
152.
K.
Tran
,
W.
Neiswanger
,
J.
Yoon
,
Q.
Zhang
,
E.
Xing
, and
Z. W.
Ulissi
, “
Methods for comparing uncertainty quantifications for material property predictions
,”
Mach. Learn.: Sci. Technol.
1
,
025006
(
2020
).
153.
M.
Hoxha
and
H.
Kamberaj
, “
Automation of some macromolecular properties using a machine learning approach
,”
Mach. Learn.: Sci. Technol.
2
,
035016
(
2021
).
154.
F.
Musil
,
M. J.
Willatt
,
M. A.
Langovoy
, and
M.
Ceriotti
, “
Fast and accurate uncertainty estimation in chemical machine learning
,”
J. Chem. Theory Comput.
15
,
906
915
(
2019
).
155.
G.
Imbalzano
,
Y.
Zhuang
,
V.
Kapil
,
K.
Rossi
,
E. A.
Engel
,
F.
Grasselli
, and
M.
Ceriotti
, “
Uncertainty estimation for molecular dynamics and sampling
,”
J. Chem. Phys.
154
,
074102
(
2021
).
156.
M.
Tynes
,
W.
Gao
,
D. J.
Burrill
,
E. R.
Batista
,
D.
Perez
,
P.
Yang
, and
N.
Lubbers
, “
Pairwise difference regression: A machine learning meta-algorithm for improved prediction and uncertainty quantification in chemical search
,”
J. Chem. Inf. Model.
61
,
3846
3857
(
2021
).
157.
L.
Hirschfeld
,
K.
Swanson
,
K.
Yang
,
R.
Barzilay
, and
C. W.
Coley
, “
Uncertainty quantification using neural networks for molecular property prediction
,”
J. Chem. Inf. Model.
60
,
3770
3780
(
2020
).
158.
I.
Cortés-Ciriano
and
A.
Bender
, “
Deep confidence: A computationally efficient framework for calculating reliable prediction errors for deep neural networks
,”
J. Chem. Inf. Model.
59
,
1269
1281
(
2019
).
159.
J.
Proppe
,
S.
Gugler
, and
M.
Reiher
, “
Gaussian process-based refinement of dispersion corrections
,”
J. Chem. Theory Comput.
15
,
6046
6060
(
2019
).
160.
A.
Nigam
,
R.
Pollice
,
M. F. D.
Hurley
,
R. J.
Hickman
,
M.
Aldeghi
,
N.
Yoshikawa
,
S.
Chithrananda
,
V. A.
Voelz
, and
A.
Aspuru-Guzik
, “
Assigning confidence to molecular property prediction
,”
Expert Opin. Drug Discovery
16
,
1009
1023
(
2021
).
161.
C.-I.
Yang
and
Y.-P.
Li
, “
Explainable uncertainty quantifications for deep learning-based molecular property prediction
,”
J. Cheminform.
15
,
13
(
2023
).
162.
S. B.
Albert Zhu
,
A.
Musaelian
, and
B.
Kozinsky
, “
Fast uncertainty estimates in deep learning interatomic potentials
,” arXiv:2211.09866v1 [physics.comp-ph] (
2022
).
163.
S. D.
Huang
,
C.
Shang
,
P. L.
Kang
,
X. J.
Zhang
, and
Z. P.
Liu
, “
LASP: Fast global potential energy surface exploration
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1415
(
2019
).
164.
A. J. M.
Ribeiro
,
G. L.
Holliday
,
N.
Furnham
,
J. D.
Tyzack
,
K.
Ferris
, and
J. M.
Thornton
, “
Mechanism and catalytic site Atlas (M-CSA): A database of enzyme reaction mechanisms and active sites
,”
Nucleic Acids Res.
46
,
D618
D623
(
2018
).
165.
L.
Goerigk
and
S.
Grimme
, “
A general database for main group thermochemistry, kinetics, and noncovalent interactions—Assessment of common and reparameterized (meta-)GGA density functionals
,”
J. Chem. Theory Comput.
6
,
107
126
(
2010
).
166.
V.
Guner
,
K. S.
Khuong
,
A. G.
Leach
,
P. S.
Lee
,
M. D.
Bartberger
, and
K. N.
Houk
, “
A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: The performance of ab initio, density functional, CASSCF, CASPT2, and CBS-QB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries
,”
J. Phys. Chem. A
107
,
11445
11459
(
2003
).
167.
T. C.
Dinadayalane
,
R.
Vijaya
,
A.
Smitha
, and
G. N.
Sastry
, “
Diels–Alder reactivity of butadiene and cyclic five-membered dienes [(CH)4X, X = CH2, SiH2, O, NH, PH, and S] with ethylene: A benchmark study
,”
J. Phys. Chem. A
106
,
1627
1633
(
2002
).
168.
D. H.
Ess
and
K. N.
Houk
, “
Activation energies of pericyclic reactions: Performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions
,”
J. Phys. Chem. A
109
,
9542
9553
(
2005
).
169.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
654
(
1980
).
170.
J. A.
Montgomery
,
M. J.
Frisch
,
J. W.
Ochterski
, and
G. A.
Petersson
, “
A complete basis set model chemistry. VI. Use of density functional geometries and frequencies
,”
J. Chem. Phys.
110
,
2822
2827
(
1999
).
171.
L.
Goerigk
and
R.
Sharma
, “
The INV24 test set: How well do quantum-chemical methods describe inversion and racemization barriers?
,”
Can. J. Chem.
94
,
1133
1143
(
2016
).
172.
A.
Karton
,
R. J.
O’Reilly
,
B.
Chan
, and
L.
Radom
, “
Determination of barrier heights for proton exchange in small water, ammonia, and hydrogen fluoride clusters with G4(MP2)-type, MPn, and SCS-MPn procedures—A caveat
,”
J. Chem. Theory Comput.
8
,
3128
3136
(
2012
).
173.
A.
Karton
,
R. J.
O’Reilly
, and
L.
Radom
, “
Assessment of theoretical procedures for calculating barrier heights for a diverse set of water-catalyzed proton-transfer reactions
,”
J. Phys. Chem. A
116
,
4211
4221
(
2012
).
174.
C.
Leys
,
C.
Ley
,
O.
Klein
,
P.
Bernard
, and
L.
Licata
, “
Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median
,”
J. Exp. Soc. Psychol.
49
,
764
766
(
2013
).
175.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley and Sons Ltd.
,
Chichester
,
2000
).
176.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
,
034112
(
2017
).
177.
M.
Nakata
,
T.
Shimazaki
,
M.
Hashimoto
, and
T.
Maeda
, “
PubChemQC PM6: Data sets of 221 million molecules with optimized molecular geometries and electronic properties
,”
J. Chem. Inf. Model.
60
,
5891
5899
(
2020
).
178.
P. O.
Dral
,
P.
Zheng
,
B.-X.
Xue
,
F.
Ge
,
Y.-F.
Hou
, and
M.
Pinheiro
, Jr.
, MLatom: A package for atomistic simulations with machine learning,
Xiamen University
,
Xiamen, China
, http://MLatom.com (accessed 11 January 2023),
2013–2022
.
179.
P. O.
Dral
, “
MLatom: A program package for quantum chemical Research assisted by machine learning
,”
J. Comput. Chem.
40
,
2339
2347
(
2019
).
180.
P. O.
Dral
,
F.
Ge
,
B.-X.
Xue
,
Y.-F.
Hou
,
M.
Pinheiro
, Jr.
,
J.
Huang
, and
M.
Barbatti
, “
MLatom 2: An integrative platform for atomistic machine learning
,”
Top. Curr. Chem.
379
,
27
(
2021
).
181.
W.
Thiel
, with contributions from
M.
Beck
,
S.
Billeter
,
R.
Kevorkiants
,
M.
Kolb
,
A.
Koslowski
,
S.
Patchkovskii
,
A.
Turner
,
E.-U.
Wallenborn
,
W.
Weber
,
L.
Spörkel
, and
P. O.
Dral
, MNDO2020: A semiempirical quantum chemistry program,
Max-Planck-Institut für Kohlenforschung
,
Mülheim an der Ruhr
, https://mndo.kofo.mpg.de (accessed 11 January 2023),
2020
.
182.
X.
Gao
,
F.
Ramezanghorbani
,
O.
Isayev
,
J. S.
Smith
, and
A. E.
Roitberg
, “
TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials
,”
J. Chem. Inf. Model.
60
,
3408
3415
(
2020
).
183.
E.
Caldeweyher
,
S.
Ehlert
, and
S.
Grimme
, DFT-D4, Version 2.5.0,
Mulliken Center for Theoretical Chemistry, University of Bonn
,
2020
.
184.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Rev. A.01,
Wallingford, CT
,
2016
.
185.
See https://github.com/grimme-lab/xtb for Semiempirical extended tight-binding program package xtb (accessed 19 November 2022).
186.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
2
,
73
78
(
2012
).
187.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
8
,
e1327
(
2018
).
188.
G. A.
Andrienko
, Chemcraft 1.8,
2016
.
189.
F.
Bosia
,
P.
Zheng
,
A.
Vaucher
,
T.
Weymuth
,
P. O.
Dral
, and
M.
Reiher
, “
Ultra-fast semi-empirical quantum chemistry for high-throughput computational campaigns with sparrow
,”
J. Chem. Phys.
158
,
054118
(
2023
).
190.
P. O.
Dral
,
Y.
Chen
,
Y.
Ou
,
P.
Zheng
,
F.
Ge
, and
Y.
Huang
, “
Data for Benchmarking general-purpose machine learning-based quantum mechanical method AIQM1 on reaction barrier heights
,” Figshare. .

Supplementary Material

You do not currently have access to this content.