Modern chemical science and industries critically depend on the application of various catalytic methods. However, the underlying molecular mechanisms of these processes still remain not fully understood. Recent experimental advances that produced highly-efficient nanoparticle catalysts allowed researchers to obtain more quantitative descriptions, opening the way to clarify the microscopic picture of catalysis. Stimulated by these developments, we present a minimal theoretical model that investigates the effect of heterogeneity in catalytic processes at the single-particle level. Using a discrete-state stochastic framework that accounts for the most relevant chemical transitions, we explicitly evaluated the dynamics of chemical reactions on single heterogeneous nanocatalysts with different types of active sites. It is found that the degree of stochastic noise in nanoparticle catalytic systems depends on several factors that include the heterogeneity of catalytic efficiencies of active sites and distinctions between chemical mechanisms on different active sites. The proposed theoretical approach provides a single-molecule view of heterogeneous catalysis and also suggests possible quantitative routes to clarify some important molecular details of nanocatalysts.

1.
G. A.
Somorjai
and
Y.
Li
,
Introduction to Surface Chemistry and Catalysis
, 2nd ed. (
John Wiley and Sons
,
Chichester, UK
,
2010
).
2.
J. R.
Ross
,
Heterogeneous Catalysis: Fundamentals and Applications
(
Elsevier
,
2011
).
3.
C. M.
Friend
and
B.
Xu
,
Acc. Chem. Res.
50
,
517
(
2017
).
4.
D. Y.
Murzin
and
T.
Salmi
,
Catalytic Kinetics
(
Elsevier
,
2005
).
5.
D. Y.
Murzin
,
Engineering Catalysis
(
de Gruyter
,
2020
).
6.
G. A.
Somorjai
,
A. M.
Contreras
,
M.
Montano
, and
R. M.
Rioux
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
10577
(
2006
).
7.
F.
Tao
,
M. E.
Grass
,
Y.
Zhang
,
D. R.
Butcher
,
J. R.
Renzas
,
Z.
Liu
,
J. Y.
Chung
,
B. S.
Mun
,
M.
Salmeron
, and
G. A.
Somorjai
,
Science
322
,
4932
(
2008
).
8.
D. E.
Makarov
,
Single Molecule Science: Physical Principles and Models
(
CRC Press
,
2015
).
9.
P.
Chen
,
X.
Zhou
,
N. M.
Andoy
,
K.-S.
Han
,
E.
Choudhary
,
N.
Zou
,
G.
Chen
, and
H.
Shen
,
Chem. Soc. Rev.
43
,
1107
(
2014
).
10.
W.
Xu
,
J. S.
Kong
,
Y.-T. E.
Yeh
, and
P.
Chen
,
Nat. Mater.
7
,
992
996
(
2008
).
11.
F.-R. F.
Fan
and
A. J.
Bard
,
Nano Lett.
8
,
1746
(
2008
).
12.
F.-R. F.
Fan
and
A. J.
Bard
,
Science
267
,
871
874
(
1995
).
13.
C.
Novo
,
A. M.
Funston
, and
P.
Mulvaney
,
Nat. Nanotechnol.
3
,
598
602
(
2008
).
14.
J. B.
Sambur
and
P.
Chen
,
Annu. Rev. Phys. Chem.
65
,
395
(
2014
).
15.
W.
Xu
,
J. S.
Kong
, and
P.
Chen
,
Phys. Chem. Chem. Phys.
11
,
2767
(
2009
).
16.
H. P.
Lu
,
L.
Xun
, and
X. S.
Xie
,
Science
282
,
1877
1882
(
1998
).
17.
B. P.
English
,
W.
Min
,
A. M.
van Oijen
,
K. T.
Lee
,
G.
Luo
,
H.
Sun
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Nat. Chem. Biol.
2
,
87
(
2006
).
18.
M. B. J.
Roeffaers
,
B. F.
Sels
,
H.
Uji-i
,
F. C.
De Schryver
,
P. A.
Jacobs
,
D. E.
De Vos
, and
J.
Hofkens
,
Nature
439
,
572
575
(
2006
).
19.
K.
Naito
,
T.
Tachikawa
,
M.
Fujitsuka
, and
T.
Majima
,
J. Phys. Chem. C
112
,
1048
(
2008
).
20.
M. A.
Ochoa
,
P.
Chen
, and
R. F.
Loring
,
J. Phys. Chem. C
117
,
19074
(
2013
).
21.
X.
Zhou
,
N. M.
Andoy
,
G.
Liu
,
E.
Choudhary
,
K.-S.
Han
,
H.
Shen
, and
P.
Chen
,
Nat. Nanotechnol.
7
,
237
(
2012
).
22.
P. L.
Hansen
,
J. B.
Wagner
,
S.
Helveg
,
J. R.
Rostrup-Nielsen
,
B. S.
Clausen
, and
H.
Topsøe
,
Science
295
,
2053
(
2002
).
23.
24.
X.
Zhou
,
W.
Xu
,
G.
Liu
,
D.
Panda
, and
P.
Chen
,
J. Am. Chem. Soc.
132
,
138
146
(
2010
).
25.
K. S.
Han
,
G.
Liu
,
X.
Zhou
,
R. E.
Medina
, and
P.
Chen
,
Nano Lett.
12
,
1253
1259
(
2012
).
26.
Y.
Zhang
,
P.
Song
,
T.
Chen
,
X.
Liu
,
T.
Chen
,
Z.
Wu
,
Y.
Wang
,
J.
Xie
, and
W.
Xu
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
10588
(
2018
).
27.
W.
Xu
,
J. S.
Kong
, and
P.
Chen
,
J. Phys. Chem. C
113
,
2393
(
2009
).
28.
A.
Das
and
S.
Chaudhury
,
Chem. Phys. Lett.
641
,
193
(
2015
).
29.
D.
Singh
and
S.
Chaudhury
,
Phys. Chem. Chem. Phys.
19
,
8889
(
2017
).
30.
S.
Chaudhury
,
D.
Singh
, and
A. B.
Kolomeisky
,
J. Phys. Chem. Lett.
11
,
2330
(
2020
).
31.
B.
Punia
,
S.
Chaudhury
, and
A. B.
Kolomeisky
,
J. Phys. Chem. Lett.
12
,
11802
(
2021
).
32.
T.
Tachikawa
,
S.
Yamashita
, and
T.
Majima
,
J. Am. Chem. Soc.
133
,
7197
(
2011
).
33.
T.
Chen
,
S.
Chen
,
Y.
Zhang
,
Y.
Qi
,
Y.
Zhao
,
W.
Xu
, and
J.
Zeng
,
Angew. Chem.
128
,
1871
(
2016
);
T.
Chen
,
S.
Chen
,
Y.
Zhang
,
Y.
Qi
,
Y.
Zhao
,
W.
Xu
, and
J.
Zeng
Angew. Chem.
55
,
1839
(
2016
).
34.
K.
Rossi
,
G. G.
Asara
, and
F.
Baletto
,
ChemPhysChem
20
,
3037
(
2019
).
35.
K.
Rossi
,
G. G.
Asara
, and
F.
Baletto
,
ACS Catal.
10
,
3911
(
2020
).
36.
N.
Zou
,
X.
Zhou
,
G.
Chen
,
N. M.
Andoy
,
W.
Jung
,
G.
Liu
, and
P.
Chen
,
Nat. Chem.
10
,
607
(
2018
).
37.
B.
Punia
,
S.
Chaudhury
, and
A. B.
Kolomeisky
,
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2115135119
(
2022
).
38.
A. B.
Kolomeisky
,
Motor Proteins and Molecular Motors
(
CRC Press
,
2015
).
39.
R.
Metzler
,
S.
Redner
, and
G.
Oshanin
,
First-Passage Phenomena and Their Applications
(
World Scientific
,
2014
), Vol. 35.
40.
S.
Redner
,
A Guide to First-Passage Processes
(
Cambridge University Press
,
2001
).
41.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol. 1.
42.
S.
Yang
,
J.
Cao
,
R. J.
Silbey
, and
J.
Sung
,
Biophys. J.
101
,
519
(
2011
).

Supplementary Material

You do not currently have access to this content.