An alternative approach to density functional theory based on self-consistent field theory for ring polymers is applied to neutral atoms hydrogen to neon in their ground-states. The spontaneous emergence of an atomic shell structure and spherical symmetry-breaking of the total electron density are predicted by the model using the ideas of polymer excluded-volume between pairs of electrons to enforce the Pauli-exclusion principle and an exact electron self-interaction correction. The Pauli potential is approximated by neglecting inter-atomic correlations along with other types of correlations, and comparisons to Hartree–Fock theory are made, which also ignores correlations. The model shows excellent agreement with Hartree–Fock theory to within the standards of orbital-free density functional theory for the atomic binding energies and density profiles of the first six elements, providing exact matches for the elements hydrogen and helium. The predicted shell structure starts to deviate significantly past the element neon, and spherical symmetry-breaking is first predicted to occur at carbon instead of boron. The self-consistent field theory energy functional that describes the model is decomposed into thermodynamic components to trace the origin of spherical symmetry-breaking. It is found to arise from the electron density approaching closer to the nucleus in non-spherical distributions, which lowers the energy despite resulting in frustration between the quantum kinetic energy, electron–electron interaction, and the Pauli exclusion interaction. The symmetry-breaking effect is found to have a minimal impact on the binding energies, which suggests that the spherical-averaging approximation used in previous work is physically reasonable when investigating atomic systems. The pair density contour plots display behavior similar to polymer macro-phase separation, where individual electron pairs occupy single lobe structures that together form a dumbbell shape analogous to the 2p orbital shape. It is further shown that the predicted densities satisfy known constraints and produce the same total electronic density profile that is predicted by other formulations of quantum mechanics.

1.
I.
Cohen
,
J. Chem. Educ.
42
,
397
398
(
1965
).
2.
V. M. S.
Gil
, “
On the shapes of atoms
,”
Rev. Port. Quim.
14
,
151
(
1972
).
3.
H. A.
Fertig
and
W.
Kohn
, “
Symmetry of the atomic electron density in Hartree, Hartree-Fock, and density-functional theories
,”
Phys. Rev. A
62
,
052511
(
2000
).
4.
S. T. u. R.
Chowdhury
and
J. P.
Perdew
, “
Spherical vs. non-spherical and symmetry-preserving vs. symmetry-breaking densities of open-shell atoms in density-functional theory
,”
J. Chem. Phys.
155
(
23
),
234110
(
2021
).
5.
A.
Meurer
 et al., “
SymPy: Symbolic computing in Python
,”
PeerJ Comput. Sci.
3
,
e103
(
2017
).
6.
R.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1989
).
7.
C. R.
Harris
 et al., “
Array programming with NumPy
,”
Nature
585
(
7825
),
357
362
(
2020
).
8.
P.
Virtanen
 et al., “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
9.
D.
Chandler
and
P. G.
Wolynes
, “
Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids
,”
J. Chem. Phys.
74
(
7
),
4078
4095
(
1981
).
10.
R. P.
Feynman
, “
Atomic theory of the λ transition in helium
,”
Phys. Rev.
91
,
1291
1301
(
1953
).
11.
R. B.
Thompson
, “
An alternative derivation of orbital-free density functional theory
,”
J. Chem. Phys.
150
(
20
),
204109
(
2019
).
12.
R. B.
Thompson
, “
An interpretation of quantum foundations based on density functional theory and polymer self-consistent field theory
,”
Quantum Stud.: Math. Found.
9
,
405
416
(
2022
).
13.
R. B.
Thompson
, “
Atomic shell structure from an orbital-free-related density- functional-theory Pauli potential
,”
Phys. Rev. A
102
(
1
),
012813
(
2020
).
14.
S.
Sillaste
and
R. B.
Thompson
, “
Molecular bonding in an orbital-free-related density functional theory
,”
J. Phys. Chem. A
126
,
325
332
(
2022
).
15.
P. A.
LeMaitre
and
R. B.
Thompson
, “
Gaussian basis functions for an orbital-free-related density functional theory of atoms
,”
Int. J. Quantum Chem.
(
2023
) (to be published).
16.
M. W.
Matsen
and
F. S.
Bates
, “
Block copolymer microstructures in the intermediate-segregation regime
,”
J. Chem. Phys.
106
,
2436
(
1997
).
17.
S.
Blundell
and
T.
Lancaster
,
Quantum Field Theory for the Gifted Amateur
(
Oxford University Press
,
2014
).
18.
M. W.
Matsen
, “
Self-consistent field theory and its applications
,” in
Soft Matter
, Polymer melts and mixtures (
Wiley VCH
,
2006
), Vol. 1, pp.
3
83
.
19.
R.
Haag
,
N. M.
Hugenholtz
, and
M.
Winnink
, “
On the equilibrium states in quantum statistical mechanics
,”
Commun. Math. Phys.
5
(
3
),
215
236
(
1967
).
20.
M. W.
Matsen
and
M.
Schick
, “
Stable and unstable phases of a diblock copolymer melt
,”
Phys. Rev. Lett.
72
,
2660
2663
(
1994
).
21.
J. U.
Kim
,
Y.-B.
Yang
, and
W. B.
Lee
, “
Self-consistent field theory of Gaussian ring polymers
,”
Macromolecules
45
(
7
),
3263
3269
(
2012
).
22.
R. O.
Jones
, “
Density-functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
,
897
923
(
2015
).
23.
V. V.
Karasiev
and
S. B.
Trickey
, “
Issues and challenges in orbital-free density functional calculations
,”
Comput. Phys. Commun.
183
(
12
),
2519
2527
(
2012
).
24.
W. C.
Witt
,
B. G.
del Rio
,
J. M.
Dieterich
, and
E. A.
Carter
, “
Orbital-free density-functional theory for materials research
,”
J. Mater. Res.
33
(
7
),
777
795
(
2018
).
25.
M.
Levy
and
H.
Ou-Yang
, “
Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional
,”
Phys. Rev. A
38
,
625
629
(
1988
).
26.
P. W.
Ayers
,
R. C.
Morrison
, and
R. G.
Parr
, “
Fermi-Amaldi model for exchange-correlation: Atomic excitation energies from orbital energy differences
,”
Mol. Phys.
103
(
15
),
2061
2072
(
2005
).
27.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover Publications
,
2012
).
28.
T. J. P.
Irons
,
T.
Helgaker
,
M. S.
Ryley
,
M.
Withnall
, and
A. M.
Teale
, “
Robust all-electron optimization in orbital-free density-functional theory using the trust-region image method
,”
J. Phys. Chem. A
125
,
459
475
(
2021
).
29.
E. H.
Lieb
, “
Density functionals for Coulomb systems
,” in
Inequalities
(
Springer
,
2002
), pp.
269
303
.
30.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods I: Use of Gaussian expansions of Slater-type atomic orbitals
,”
J. Chem. Phys.
51
(
6
),
2657
2664
(
1969
).
31.
T.
Helgaker
and
P. R.
Taylor
, “
Gaussian basis sets and molecular integrals
,” in
Modern Electronic Structure Theory
(
World Scientific
,
1995
), Chap. XII, pp.
725
856
.
32.
S.
Huzinaga
,
J.
Andzelm
,
E.
Radzio-Andzelm
,
Y.
Sakai
,
H.
Tatewaki
, and
M.
Klobukowski
,
Gaussian Basis Sets for Molecular Calculations
(
Elsevier Science
,
2012
).
33.
M. W.
Schmidt
and
K.
Ruedenberg
, “
Effective convergence to complete orbital bases and to the atomic Hartree–Fock limit through systematic sequences of Gaussian primitives
,”
J. Chem. Phys.
71
(
10
),
3951
3962
(
1979
).
34.
M.
Alipour
, “
Making a happy match between orbital-free density-functional theory and information energy density
,”
Chem. Phys. Lett.
635
,
210
212
(
2015
).
35.
Á.
Nagy
, “
Fisher and Shannon information in orbital-free density-functional theory
,”
Int. J. Quantum Chem.
115
(
19
),
1392
1395
(
2015
).
36.
J.
Autschbach
, “
Perspective: Relativistic effects
,”
J. Chem. Phys.
136
(
15
),
150902
(
2012
).
37.
W.
Liu
, “
Essentials of relativistic quantum chemistry
,”
J. Chem. Phys.
152
(
18
),
180901
(
2020
).
38.
L.
Visscher
and
K. G.
Dyall
, “
Dirac–Fock atomic electronic structure calculations using different nuclear charge distributions
,”
At. Data Nucl. Data Tables
67
(
2
),
207
224
(
1997
).
39.
H. H. H.
Homeier
and
E. O.
Steinborn
, “
Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients
,”
J. Mol. Struct.
368
,
31
37
(
1996
), Proceedings of the Second Electronic Computational Chemistry Conference.
40.
V. K.
Khersonskii
,
A. N.
Moskalev
, and
D. A.
Varshalovich
,
Quantum Theory of Angular Momentum
(
World Scientific Publishing Company
,
1988
).
41.
D.
Sébilleau
, “
On the computation of the integrated products of three spherical harmonics
,”
J. Phys. A Math. Gen.
31
(
34
),
7157
7168
(
1998
).
42.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
(
22
),
2471
(
1985
).
43.
T.
Koga
and
A. J.
Thakker
, “
Moments and expansion coefficients of atomic electron momentum densities: Numerical Hartree-Fock calculations for hydrogen to lawrencium
,”
J. Phys. B: At. Mol. Opt. Phys.
29
,
2973
(
1996
).
You do not currently have access to this content.