The aggregation morphologies of conjugated polymers in solutions and solid films are important for their optoelectronic applications. Due to the amorphous state of the polymers, it remains a great challenge to determine their conformations in either liquids or solids. Herein, a ps/fs synchronized 2D IR technique is applied to investigate the molecular conformations of a high-mobility n-type low-bandgap copolymer, N2200, dissolved in CHCl3 and CCl4, and in solid films cast from both solutions by the vibrational cross-angle method. In CCl4, the polymer forms more aggregates and folds more and the backbone dihedral angle of C–C(NDI)/C–S(Thiophene) of its average conformation is about 10° more distorted than that in CHCl3 and the most stable conformation for a free molecule. Anti-intuitively, the solid films cast from both solutions have the same molecular conformation, and the conformation is similar to that of the polar CHCl3 rather than the conformation of the less polar CCl4. The results imply that the interaction between the polymer backbones is probably stronger than its interaction with CCl4, which can naturally guide the rearrangement of polymer chains during the evaporation of solvent molecules. This work also implies that the balance and competition between the polymer/polymer interaction and the polymer/solvent interaction seem to be the dominant factors responsible for what morphology can form in a solid film cast from solution. It is not always true that different molecular conformations must exist in solid films grown from different solutions with different polarity or different extents of aggregates with different conformations.

1.
S.
Inal
,
J.
Rivnay
,
A.-O.
Suiu
,
G. G.
Malliaras
, and
I.
McCulloch
, “
Conjugated polymers in bioelectronics
,”
Acc. Chem. Res.
51
,
1368
1376
(
2018
).
2.
D.
Dang
,
D.
Yu
, and
E.
Wang
, “
Conjugated donor–acceptor terpolymers toward high-efficiency polymer solar cells
,”
Adv. Mater.
31
,
1807019
(
2019
).
3.
P. M.
Beaujuge
and
J. M. J.
Fréchet
, “
Molecular design and ordering effects in π-functional materials for transistor and solar cell applications
,”
J. Am. Chem. Soc.
133
,
20009
20029
(
2011
).
4.
D.
Venkateshvaran
 et al, “
Approaching disorder-free transport in high-mobility conjugated polymers
,”
Nature
515
,
384
388
(
2014
).
5.
K. S.
Park
,
J. J.
Kwok
,
P.
Kafle
, and
Y.
Diao
, “
When assembly meets processing: Tuning multiscale morphology of printed conjugated polymers for controlled charge transport
,”
Chem. Mater.
33
,
469
498
(
2021
).
6.
C. L.
Donley
 et al, “
Effects of packing structure on the optoelectronic and charge transport properties in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole)
,”
J. Am. Chem. Soc.
127
,
12890
12899
(
2005
).
7.
R. J.
Kline
 et al, “
Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight
,”
Macromolecules
38
,
3312
3319
(
2005
).
8.
H.
Sirringhaus
 et al, “
Two-dimensional charge transport in self-organized, high-mobility conjugated polymers
,”
Nature
401
,
685
688
(
1999
).
9.
S.
Ning
 et al, “
π-Conjugated unit-dependent optical properties of linear conjugated oligomers
,”
Chin. J. Chem. Phys.
27
,
315
320
(
2014
).
10.
C.
Qing
and
W.
Qing-zhen
, “
Electrochemical synthesis and research of two polymers composed of alternate carbazole and thiophene units
,”
Chin. J. Chem. Phys.
28
,
639
644
(
2015
).
11.
L.
Ding
 et al, “
Controllable transformation between the kinetically and thermodynamically stable aggregates in a solution of conjugated polymers
,”
Macromolecules
54
,
5815
5824
(
2021
).
12.
Y.
Liu
 et al, “
Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells
,”
Nat. Commun.
5
,
5293
(
2014
).
13.
Y.
Xi
,
C. M.
Wolf
, and
L. D.
Pozzo
, “
Self-assembly of donor–acceptor conjugated polymers induced by miscible ‘poor’ solvents
,”
Soft Matter
15
,
1799
1812
(
2019
).
14.
J.
Zhao
 et al, “
Efficient organic solar cells processed from hydrocarbon solvents
,”
Nat. Energy
1
,
15027
(
2016
).
15.
K. S.
Park
 et al, “
Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow
,”
Sci. Adv.
5
,
eaaw7757
(
2019
).
16.
Z. F.
Yao
 et al, “
Wafer-scale fabrication of high-performance n-type polymer monolayer transistors using a multi-level self-assembly strategy
,”
Adv. Mater.
31
,
1806747
(
2019
).
17.
Y. Q.
Zheng
 et al, “
Unraveling the solution-state supramolecular structures of donor–acceptor polymers and their influence on solid-state morphology and charge-transport properties
,”
Adv. Mater.
29
,
1701072
(
2017
).
18.
N.-K.
Kim
 et al, “
High-performance organic field-effect transistors with directionally aligned conjugated polymer film deposited from pre-aggregated solution
,”
Chem. Mater.
27
,
8345
8353
(
2015
).
19.
Z. F.
Yao
 et al, “
Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation
,”
Angew. Chem., Int. Ed.
59
,
17467
17471
(
2020
).
20.
Y.
Jiang
 et al, “
Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors
,”
Adv. Mater.
31
,
1805761
(
2019
).
21.
J.
Rivnay
 et al, “
Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer
,”
Adv. Mater.
22
,
4359
4363
(
2010
).
22.
T.
Schuettfort
 et al, “
Surface and bulk structural characterization of a high-mobility electron-transporting polymer
,”
Macromolecules
44
,
1530
1539
(
2011
).
23.
J.
Rivnay
 et al, “
Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport
,”
Macromolecules
44
,
5246
5255
(
2011
).
24.
R.
Steyrleuthner
 et al, “
Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology
,”
J. Am. Chem. Soc.
134
,
18303
18317
(
2012
).
25.
H.
Yan
 et al, “
A high-mobility electron-transporting polymer for printed transistors
,”
Nature
457
,
679
686
(
2009
).
26.
J.
Zheng
,
K.
Kwak
, and
M. D.
Fayer
, “
Ultrafast 2D IR vibrational echo spectroscopy
,”
Acc. Chem. Res.
40
,
75
83
(
2007
).
27.
N. T.
Hunt
, “
2D-IR spectroscopy: Ultrafast insights into biomolecule structure and function
,”
Chem. Soc. Rev.
38
,
1837
1848
(
2009
).
28.
Z.
Ganim
 et al, “
Amide I two-dimensional infrared spectroscopy of proteins
,”
Acc. Chem. Res.
41
,
432
441
(
2008
).
29.
J.
Zheng
 et al, “
Ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time
,”
Science
309
,
1338
1343
(
2005
).
30.
J.
Zheng
,
K.
Kwak
,
X.
Chen
,
J. B.
Asbury
, and
M. D.
Fayer
, “
Formation and dissociation of intra–intermolecular hydrogen-bonded Solute–Solvent complexes: Chemical exchange two-dimensional infrared vibrational echo spectroscopy
,”
J. Am. Chem. Soc.
128
,
2977
2987
(
2006
).
31.
S. Y.
Chun
 et al, “
Direct observation of protein structural transitions through entire amyloid aggregation processes in water using 2D-IR spectroscopy
,”
Chem. Sci.
13
,
4482
4489
(
2022
).
32.
Y.
Zhang
 et al, “
Structural analysis of transient reaction intermediate in formic acid dehydrogenation catalysis using two-dimensional IR spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
12395
12400
(
2018
).
33.
P.
Hamm
,
M.
Lim
,
W. F.
DeGrado
, and
R. M.
Hochstrasser
, “
The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
2036
2041
(
1999
).
34.
D. V.
Kurochkin
,
S. R. G.
Naraharisetty
, and
I. V.
Rubtsov
, “
A relaxation-assisted 2D IR spectroscopy method
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
14209
14214
(
2007
).
35.
S.-H.
Shim
and
M. T.
Zanni
, “
How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopiesvia pulse shaping
,”
Phys. Chem. Chem. Phys.
11
,
748
761
(
2009
).
36.
M. F.
DeCamp
 et al, “
Amide I vibrational dynamics of N-methylacetamide in polar solvents: The role of electrostatic interactions
,”
J. Phys. Chem. B
109
,
11016
11026
(
2005
).
37.
H.
Maekawa
,
M.
De Poli
,
C.
Toniolo
, and
N.-H.
Ge
, “
Couplings between peptide linkages across a 310-helical hydrogen bond revealed by two-dimensional infrared spectroscopy
,”
J. Am. Chem. Soc.
131
,
2042
2043
(
2009
).
38.
L. J. G. W.
van Wilderen
,
D.
Kern-Michler
,
H. M.
Müller-Werkmeister
, and
J.
Bredenbeck
, “
Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy
,”
Phys. Chem. Chem. Phys.
16
,
19643
19653
(
2014
).
39.
J. T.
King
,
M. R.
Ross
, and
K. J.
Kubarych
, “
Water-assisted vibrational relaxation of a metal carbonyl complex studied with ultrafast 2D-IR
,”
J. Phys. Chem. B
116
,
3754
3759
(
2012
).
40.
B.
Xiang
 et al, “
Two-dimensional infrared spectroscopy of vibrational polaritons
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
4845
4850
(
2018
).
41.
C. R.
Baiz
,
D.
Schach
, and
A.
Tokmakoff
, “
Ultrafast 2D IR microscopy
,”
Opt. Express
22
,
18724
18735
(
2014
).
42.
T. l. C.
Jansen
,
S.
Saito
,
J.
Jeon
, and
M.
Cho
, “
Theory of coherent two-dimensional vibrational spectroscopy
,”
J. Chem. Phys.
150
,
100901
(
2019
).
43.
S. T.
Roberts
,
J. J.
Loparo
, and
A.
Tokmakoff
, “
Characterization of spectral diffusion from two-dimensional line shapes
,”
J. Chem. Phys.
125
,
084502
(
2006
).
44.
H.
Chen
 et al, “
Vibrational cross-angles in condensed molecules: A structural tool
,”
J. Phys. Chem. A
117
,
8407
8415
(
2013
).
45.
H.
Chen
,
H.
Bian
,
J.
Li
,
X.
Wen
, and
J.
Zheng
, “
Relative intermolecular orientation probed via molecular heat transport
,”
J. Phys. Chem. A
117
,
6052
6065
(
2013
).
46.
J.
Bredenbeck
,
J.
Helbing
,
C.
Kolano
, and
P.
Hamm
, “
Ultrafast 2D–IR spectroscopy of transient species
,”
ChemPhysChem
8
,
1747
1756
(
2007
).
47.
J. D.
Cyran
and
A. T.
Krummel
, “
Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy
,”
J. Chem. Phys.
142
,
212435
(
2015
).
48.
H.
Bian
 et al, “
Mapping molecular conformations with multiple-mode two-dimensional infrared spectroscopy
,”
J. Phys. Chem. A
115
,
3357
3365
(
2011
).
49.
H.
Chen
,
H.
Bian
,
J.
Li
,
X.
Wen
, and
J.
Zheng
, “
Ultrafast multiple-mode multiple-dimensional vibrational spectroscopy
,”
Int. Rev. Phys. Chem.
31
,
469
565
(
2012
).
50.
S.
Nigam
and
S.
Rutan
, “
Principles and applications of solvatochromism
,”
Appl. Spectrosc.
55
,
362a
370a
(
2001
).
51.
P.
Suppan
, “
Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states
,”
J. Photochem. Photobiol., A
50
,
293
330
(
1990
).
52.
T.-Q.
Nguyen
,
V.
Doan
, and
B. J.
Schwartz
, “
Conjugated polymer aggregates in solution: Control of interchain interactions
,”
J. Chem. Phys.
110
,
4068
4078
(
1999
).
53.
M.
Grell
 et al, “
Chain geometry, solution aggregation and enhanced dichroism in the liquidcrystalline conjugated polymer poly(9,9-dioctylfluorene)
,”
Acta Polym.
49
,
439
444
(
1998
).
54.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
, “
Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution
,”
J. Phys. Chem. A
107
,
5258
5279
(
2003
).
55.
J.
Zheng
 et al, “
Accidental vibrational degeneracy in vibrational excited states observed with ultrafast two-dimentional IR vibrational echo spectroscopy
,”
J. Chem. Phys.
123
,
164301
(
2005
).
56.
J.
Zheng
,
Ultrafast Chemical Exchange Spectroscopy
(
VDM Verlag
,
2008
), p.
216
.
57.
Y.
Futami
,
Y.
Ozaki
,
Y.
Hamada
,
M. J.
Wojcik
, and
Y.
Ozaki
, “
Solvent dependence of absorption intensities and wavenumbers of the fundamental and first overtone of NH stretching vibration of pyrrole studied by near-infrared/infrared spectroscopy and DFT calculations
,”
J. Phys. Chem. A
115
,
1194
1198
(
2011
).
58.
S.
Berson
,
R.
De Bettignies
,
S.
Bailly
, and
S.
Guillerez
, “
Poly(3-hexylthiophene) fibers for photovoltaic applications
,”
Adv. Funct. Mater.
17
,
1377
1384
(
2007
).

Supplementary Material

You do not currently have access to this content.