Recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys.151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange–correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew–Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn–Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of the AE6 dataset better than some of the most widely used generalized-gradient-approximation (GGA) functional [e.g., Perdew–Burke–Ernzerhof (PBE)] and barrier heights of the BH6 database better than some of the most widely used hybrid functionals (e.g., PBE0 and B3LYP). The LSIC method [a mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.

1.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
2.
M.
Levy
, “
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem
,”
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
6065
(
1979
).
3.
K. R.
Bryenton
,
A. A.
Adeleke
,
S. G.
Dale
, and
E. R.
Johnson
, “
Delocalization error: The greatest outstanding challenge in density-functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
e1631
(
2022
).
4.
I.
Lindgren
, “
A statistical exchange approximation for localized electrons
,”
Int. J. Quantum Chem.
5
,
411
420
(
1971
).
5.
J. P.
Perdew
, “
Orbital functional for exchange and correlation: Self-interaction correction to the local density approximation
,”
Chem. Phys. Lett.
64
,
127
130
(
1979
).
6.
M. S.
Gopinathan
, “
Improved approximate representation of the Hartree-Fock potential in atoms
,”
Phys. Rev. A
15
,
2135
2142
(
1977
).
7.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
8.
U.
Lundin
and
O.
Eriksson
, “
Novel method of self-interaction corrections in density functional calculations
,”
Int. J. Quantum Chem.
81
,
247
252
(
2001
).
9.
A.
Zunger
,
J. P.
Perdew
, and
G. L.
Oliver
, “
A self-interaction corrected approach to many-electron systems: Beyond the local spin density approximation
,”
Solid State Commun.
34
,
933
936
(
1980
).
10.
O.
Gunnarsson
and
R. O.
Jones
, “
Self-interaction corrections in the density functional formalism
,”
Solid State Commun.
37
,
249
252
(
1981
).
11.
S.
Manoli
and
M. A.
Whitehead
, “
Generalized-exchange local-spin-density-functional theory: Self-interaction correction
,”
Phys. Rev. A
38
,
630
635
(
1988
).
12.
Y.
Guo
and
M. A.
Whitehead
, “
An alternative self-interaction correction in the generalized exchange local-density functional theory
,”
J. Comput. Chem.
12
,
803
810
(
1991
).
13.
A. D.
Becke
and
M. R.
Roussel
, “
Exchange holes in inhomogeneous systems: A coordinate-space model
,”
Phys. Rev. A
39
,
3761
3767
(
1989
).
14.
A. D.
Becke
, “
Hartree-Fock exchange energy of an inhomogeneous electron gas
,”
Int. J. Quantum Chem.
23
,
1915
1922
(
1983
).
15.
T.
Tsuneda
,
M.
Kamiya
, and
K.
Hirao
, “
Regional self-interaction correction of density functional theory
,”
J. Comput. Chem.
24
,
1592
1598
(
2003
).
16.
T.
Tsuneda
and
K.
Hirao
, “
Self-interaction corrections in density functional theory
,”
J. Chem. Phys.
140
,
18A513
(
2014
).
17.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Local hybrid functionals
,”
J. Chem. Phys.
118
,
1068
1073
(
2003
).
18.
M.
Kaupp
,
H.
Bahmann
, and
A. V.
Arbuznikov
, “
Local hybrid functionals: An assessment for thermochemical kinetics
,”
J. Chem. Phys.
127
,
194102
(
2007
).
19.
T.
Schmidt
,
E.
Kraisler
,
A.
Makmal
,
L.
Kronik
, and
S.
Kümmel
, “
A self-interaction-free local hybrid functional: Accurate binding energies vis-á-vis accurate ionization potentials from Kohn-Sham eigenvalues
,”
J. Chem. Phys.
140
,
18A510
(
2014
).
20.
R.
Latter
, “
Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential
,”
Phys. Rev.
99
,
510
519
(
1955
).
21.
I.
Dabo
,
A.
Ferretti
, and
N.
Marzari
, “
Piecewise linearity and spectroscopic properties from Koopmans-compliant functionals
,” in
First Principles Approaches to Spectroscopic Properties of Complex Materials
, edited by
C.
Di Valentin
,
S.
Botti
and
M.
Cococcioni
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2014
), pp.
193
233
.
22.
G.
Borghi
,
A.
Ferretti
,
N. L.
Nguyen
,
I.
Dabo
, and
N.
Marzari
, “
Koopmans-compliant functionals and their performance against reference molecular data
,”
Phys. Rev. B
90
,
075135
(
2014
).
23.
C. D.
Pemmaraju
,
T.
Archer
,
D.
Sánchez-Portal
, and
S.
Sanvito
, “
Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids
,”
Phys. Rev. B
75
,
045101
(
2007
).
24.
G.
Li Manni
,
R. K.
Carlson
,
S.
Luo
,
D.
Ma
,
J.
Olsen
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Multiconfiguration pair-density functional theory
,”
J. Chem. Theory Comput.
10
,
3669
3680
(
2014
).
25.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
,
943
(
1991
).
26.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
, “
Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
,”
Phys. Rev. B
52
,
R5467
R5470
(
1995
).
27.
A. D.
Becke
, “
A new mixing of Hartree-Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
28.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
, “
A long-range correction scheme for generalized-gradient-approximation exchange functionals
,”
J. Chem. Phys.
115
,
3540
3544
(
2001
).
29.
B. G.
Janesko
, “
Replacing hybrid density functional theory: Motivation and recent advances
,”
Chem. Soc. Rev.
50
,
8470
(
2021
).
30.
J. G.
Harrison
,
R. A.
Heaton
, and
C. C.
Lin
, “
Self-interaction correction to the local density Hartree-Fock atomic calculations of excited and ground states
,”
J. Phys. B: At. Mol. Phys.
16
,
2079
2091
(
1983
).
31.
J. G.
Harrison
, “
An improved self-interaction-corrected local spin density functional for atoms
,”
J. Chem. Phys.
78
,
4562
4566
(
1983
).
32.
R. A.
Heaton
and
C. C.
Lin
, “
Self-interaction-correction theory for density functional calculations of electronic energy bands for the lithium chloride crystal
,”
J. Phys. C: Solid State Phys.
17
,
1853
1866
(
1984
).
33.
R. A.
Heaton
and
C. C.
Lin
, “
Electronic energy-band structure of the calcium fluoride crystal
,”
Phys. Rev. B
22
,
3629
(
1980
).
34.
H.
Gudmundsdóttir
,
E. Ö.
Jónsson
, and
H.
Jónsson
, “
Calculations of Al dopant in α-quartz using a variational implementation of the Perdew–Zunger self-interaction correction
,”
New J. Phys.
17
,
083006
(
2015
).
35.
E. Ö.
Jónsson
,
S.
Lehtola
, and
H.
Jónsson
, “
Towards an optimal gradient-dependent energy functional of the PZ-SIC form
,”
Procedia Comput. Sci.
51
,
1858
1864
(
2015
).
36.
S.
Lehtola
,
E. Ö.
Jónsson
, and
H.
Jónsson
, “
Effect of complex-valued optimal orbitals on atomization energies with the Perdew-Zunger self-interaction correction to density functional theory
,”
J. Chem. Theory Comput.
12
,
4296
4302
(
2016
).
37.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
, “
The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules
,”
J. Chem. Phys.
137
,
124102
(
2012
).
38.
S.
Lehtola
and
H.
Jónsson
, “
Variational, self-consistent implementation of the Perdew-Zunger self-interaction correction with complex optimal orbitals
,”
J. Chem. Theory Comput.
10
,
5324
5337
(
2014
).
39.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Ionization potentials and electron affinities in the Perdew-Zunger self-interaction corrected density-functional theory
,”
J. Chem. Phys.
122
,
184107
(
2005
).
40.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Effect of the Perdew-Zunger self-interaction correction on the thermochemical performance of approximate density functionals
,”
J. Chem. Phys.
121
,
8187
8193
(
2004
).
41.
S.
Lehtola
,
M.
Head-Gordon
, and
H.
Jónsson
, “
Complex orbitals, multiple local minima, and symmetry breaking in Perdew-Zunger self-interaction corrected density functional theory calculations
,”
J. Chem. Theory Comput.
12
,
3195
3207
(
2016
).
42.
B. G.
Janesko
, “
Systematically improvable generalization of self-interaction corrected density functional theory
,”
J. Phys. Chem. Lett.
13
,
5698
5702
(
2022
).
43.
E. J.
Bylaska
,
K.
Tsemekhman
, and
F.
Gao
, “
New development of self-interaction corrected DFT for extended systems applied to the calculation of native defects in 3C–SiC
,”
Phys. Scr.
T124
,
86
90
(
2006
).
44.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
, “
Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for, LiH+, and H2+
, He2+Ne2+,”
J. Chem. Phys.
126
,
104102
(
2007
).
45.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
, “
Spurious fractional charge on dissociated atoms: Pervasive and resilient self-interaction error of common density functionals
,”
J. Chem. Phys.
125
,
194112
(
2006
).
46.
K. A.
Jackson
,
J. E.
Peralta
,
R. P.
Joshi
,
K. P.
Withanage
,
K.
Trepte
,
K.
Sharkas
, and
A. I.
Johnson
, “
Towards efficient density functional theory calculations without self-interaction: The Fermi-Löwdin orbital self-interaction correction
,”
J. Phys.: Conf. Ser.
1290
,
012002
(
2019
).
47.
S.
Patchkovskii
and
T.
Ziegler
, “
Improving “difficult” reaction barriers with self-interaction corrected density functional theory
,”
J. Chem. Phys.
116
,
7806
7813
(
2002
).
48.
S.
Kümmel
and
J. P.
Perdew
, “
Two avenues to self-interaction correction within Kohn-Sham theory: Unitary invariance is the shortcut
,”
Mol. Phys.
101
,
1363
1368
(
2003
).
49.
T.
Körzdörfer
,
S.
Kümmel
, and
M.
Mundt
, “
Self-interaction correction and the optimized effective potential
,”
J. Chem. Phys.
129
,
014110
(
2008
).
50.
T.
Baruah
,
R. R.
Zope
,
A.
Kshirsagar
, and
R. K.
Pathak
, “
Positron binding: A positron-density viewpoint
,”
Phys. Rev. A
50
,
2191
2196
(
1994
).
51.
V.
Polo
,
E.
Kraka
, and
D.
Cremer
, “
Electron correlation and the self-interaction error of density functional theory
,”
Mol. Phys.
100
,
1771
1790
(
2002
).
52.
R. A.
Heaton
,
J. G.
Harrison
, and
C. C.
Lin
, “
Self-interaction correction for density-functional theory of electronic energy bands of solids
,”
Phys. Rev. B
28
,
5992
(
1983
).
53.
S.
Goedecker
and
C. J.
Umrigar
, “
Critical assessment of the self-interaction-corrected–local-density-functional method and its algorithmic implementation
,”
Phys. Rev. A
55
,
1765
(
1997
).
54.
A.
Svane
, “
Electronic structure of cerium in the self-interaction-corrected local-spin-density approximation
,”
Phys. Rev. B
53
,
4275
(
1996
).
55.
A.
Svane
,
W. M.
Temmerman
,
Z.
Szotek
,
J.
Lægsgaard
, and
H.
Winter
, “
Self-interaction-corrected local-spin-density calculations for rare earth materials
,”
Int. J. Quantum Chem.
77
,
799
813
(
2000
).
56.
M. M.
Rieger
and
P.
Vogl
, “
Self-interaction corrections in semiconductors
,”
Phys. Rev. B
52
,
16567
(
1995
).
57.
R. R.
Zope
,
M. K.
Harbola
, and
R. K.
Pathak
, “
Atomic Compton profiles within different exchange-only theories
,”
Eur. Phys. J. D
7
,
151
155
(
1999
).
58.
N.
Hamada
and
S.
Ohnishi
, “
Self-interaction correction to the local-density approximation in the calculation of the energy band gaps of semiconductors based on the full-potential linearized augmented-plane-wave method
,”
Phys. Rev. B
34
,
9042
(
1986
).
59.
M.
Biagini
, “
Self-interaction-corrected density-functional formalism
,”
Phys. Rev. B
49
,
2156
(
1994
).
60.
Y.
Xie
,
R.
Han
, and
X.
Zhang
, “
Obtaining localized orbitals and band structure in self-interaction-corrected density-functional theory
,”
Phys. Rev. B
60
,
8543
(
1999
).
61.
M.
Arai
and
T.
Fujiwara
, “
Electronic structures of transition-metal mono-oxides in the self-interaction-corrected local-spin-density approximation
,”
Phys. Rev. B
51
,
1477
(
1995
).
62.
M.
Stengel
and
N. A.
Spaldin
, “
Self-interaction correction with Wannier functions
,”
Phys. Rev. B
77
,
155106
(
2008
).
63.
D. L.
Price
, “
Application of an on-site self-interaction-corrected method to Ce and the α-Ce surface
,”
Phys. Rev. B
60
,
10588
(
1999
).
64.
C.
Shahi
,
P.
Bhattarai
,
K.
Wagle
,
B.
Santra
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
K. A.
Jackson
,
J. E.
Peralta
,
K.
Trepte
,
S.
Lehtola
,
N. K.
Nepal
,
H.
Myneni
,
B.
Neupane
,
S.
Adhikari
,
A.
Ruzsinszky
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
, and
J. P.
Perdew
, “
Stretched or noded orbital densities and self-interaction correction in density functional theory
,”
J. Chem. Phys.
150
,
174102
(
2019
).
65.
O. A.
Vydrov
,
G. E.
Scuseria
,
J. P.
Perdew
,
A.
Ruzsinszky
, and
G. I.
Csonka
, “
Scaling down the Perdew-Zunger self-interaction correction in many-electron regions
,”
J. Chem. Phys.
124
,
094108
(
2006
).
66.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
, and
M. R.
Pederson
, “
Paradox of self-interaction correction: How can anything so right be so wrong?
Adv. At., Mol., Opt. Phys.
64
,
1
14
(
2015
).
67.
G. I.
Csonka
and
B. G.
Johnson
, “
Inclusion of exact exchange for self-interaction corrected H3 density functional potential energy surface
,”
Theor. Chem. Acc.
99
,
158
165
(
1998
).
68.
A. I.
Johnson
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
J. E.
Peralta
, and
K. A.
Jackson
, “
The effect of self-interaction error on electrostatic dipoles calculated using density functional theory
,”
J. Chem. Phys.
151
,
174106
(
2019
).
69.
R. R.
Zope
,
Y.
Yamamoto
,
C. M.
Diaz
,
T.
Baruah
,
J. E.
Peralta
,
K. A.
Jackson
,
B.
Santra
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction
,”
J. Chem. Phys.
151
,
214108
(
2019
).
70.
M. R.
Pederson
and
J. P.
Perdew
, “
5 scientific highlight of the month self-interaction correction in density functional theory: The road less traveled
,”
Psi-k Newsletter
109
,
77
(
2012
).
71.
W. L.
Luken
and
D. N.
Beratan
, “
Localized orbitals and the Fermi hole
,”
Theor. Chem. Acc.
61
,
265
281
(
1982
).
72.
W. L.
Luken
and
J. C.
Culberson
, “
Localized orbitals based on the Fermi hole
,”
Theor. Chem. Acc.
66
,
279
293
(
1984
).
73.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
74.
M. R.
Pederson
, “
Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms
,”
J. Chem. Phys.
142
,
064112
(
2015
).
75.
M. R.
Pederson
and
T.
Baruah
, “
Chapter eight—Self-interaction corrections within the Fermi-orbital-based formalism
,”
Adv. At., Mol., Opt. Phys.
64
,
153
180
(
2015
).
76.
Z.-h.
Yang
,
M. R.
Pederson
, and
J. P.
Perdew
, “
Full self-consistency in the fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
77.
C. M.
Diaz
,
T.
Baruah
, and
R. R.
Zope
, “
Fermi-Löwdin-orbital self-interaction correction using the optimized-effective-potential method within the Krieger-Li-Iafrate approximation
,”
Phys. Rev. A
103
,
042811
(
2021
).
78.
C. M.
Diaz
,
P.
Suryanarayana
,
Q.
Xu
,
T.
Baruah
,
J. E.
Pask
, and
R. R.
Zope
, “
Implementation of Perdew–Zunger self-interaction correction in real space using Fermi–Löwdin orbitals
,”
J. Chem. Phys.
154
,
084112
(
2021
).
79.
P.
Bhattarai
,
B.
Santra
,
K.
Wagle
,
Y.
Yamamoto
,
R. R.
Zope
,
A.
Ruzsinszky
,
K. A.
Jackson
, and
J. P.
Perdew
, “
Exploring and enhancing the accuracy of interior-scaled Perdew-Zunger self-interaction correction
,”
J. Chem. Phys.
154
,
094105
(
2021
).
80.
S.
Romero
,
Y.
Yamamoto
,
T.
Baruah
, and
R. R.
Zope
, “
Local self-interaction correction method with a simple scaling factor
,”
Phys. Chem. Chem. Phys.
23
,
2406
2418
(
2021
).
81.
S.
Schwalbe
,
L.
Fiedler
,
J.
Kraus
,
J.
Kortus
,
K.
Trepte
, and
S.
Lehtola
, “
PyFLOSIC: Python-based Fermi–Löwdin orbital self-interaction correction
,”
J. Chem. Phys.
153
,
084104
(
2020
).
82.
Y.
Yamamoto
,
A.
Salcedo
,
C. M.
Diaz
,
M. S.
Alam
,
T.
Baruah
, and
R. R.
Zope
, “
Assessing the effect of regularization on the molecular properties predicted by SCAN and self-interaction corrected SCAN meta-GGA
,”
Phys. Chem. Chem. Phys.
22
,
18060
18070
(
2020
).
83.
Y.
Yamamoto
,
S.
Romero
,
T.
Baruah
, and
R. R.
Zope
, “
Improvements in the orbitalwise scaling down of Perdew-Zunger self-interaction correction in many-electron regions
,”
J. Chem. Phys.
152
,
174112
(
2020
).
84.
P.
Bhattarai
,
K.
Wagle
,
C.
Shahi
,
Y.
Yamamoto
,
S.
Romero
,
B.
Santra
,
R. R.
Zope
,
J. E.
Peralta
,
K. A.
Jackson
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew–Zunger self-interaction correction. II. Gauge consistency of the energy density at three levels of approximation
,”
J. Chem. Phys.
152
,
214109
(
2020
).
85.
S.
Akter
,
Y.
Yamamoto
,
R. R.
Zope
, and
T.
Baruah
, “
Static dipole polarizabilities of polyacenes using self-interaction-corrected density functional approximations
,”
J. Chem. Phys.
154
,
114305
(
2021
).
86.
S.
Akter
,
J. A. V.
Tellez
,
K.
Sharkas
,
J.
Peralta
,
K.
Jackson
,
T.
Baruah
, and
R.
Zope
, “
How well do self-interaction corrections repair the over-estimation of molecular polarizabilities in density functional calculations?
Phys. Chem. Chem. Phys.
23
,
18678
(
2021
).
87.
K. P. K.
Withanage
,
S.
Akter
,
C.
Shahi
,
R. P.
Joshi
,
C.
Diaz
,
Y.
Yamamoto
,
R.
Zope
,
T.
Baruah
,
J. P.
Perdew
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Self-interaction-free electric dipole polarizabilities for atoms and their ions using the Fermi-Löwdin self-interaction correction
,”
Phys. Rev. A
100
,
012505
(
2019
).
88.
S.
Akter
,
Y.
Yamamoto
,
C. M.
Diaz
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew–Zunger and locally scaled self-interaction corrected methods
,”
J. Chem. Phys.
153
,
164304
(
2020
).
89.
R. P.
Joshi
,
K.
Trepte
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
L.
Basurto
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Fermi-Löwdin orbital self-interaction correction to magnetic exchange couplings
,”
J. Chem. Phys.
149
,
164101
(
2018
).
90.
P.
Mishra
,
Y.
Yamamoto
,
P.-H.
Chang
,
D. B.
Nguyen
,
J. E.
Peralta
,
T.
Baruah
, and
R. R.
Zope
, “
Study of self-interaction errors in density functional calculations of magnetic exchange coupling constants using three self-interaction correction methods
,”
J. Phys. Chem. A
126
,
1923
1935
(
2022
).
91.
P.
Mishra
,
Y.
Yamamoto
,
J. K.
Johnson
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction-errors in barrier heights using locally scaled and Perdew-Zunger self-interaction methods
,”
J. Chem. Phys.
156
,
014306
(
2022
).
92.
L.
Li
,
K.
Trepte
,
K. A.
Jackson
, and
J. K.
Johnson
, “
Application of self-interaction corrected density functional theory to early, middle, and late transition states
,”
J. Phys. Chem. A
124
,
8223
8234
(
2020
).
93.
A.
Karanovich
,
Y.
Yamamoto
,
K. A.
Jackson
, and
K.
Park
, “
Electronic structure of mononuclear Cu-based molecule from density-functional theory with self-interaction correction
,”
J. Chem. Phys.
155
,
014106
(
2021
).
94.
S.
Schwalbe
,
T.
Hahn
,
S.
Liebing
,
K.
Trepte
, and
J.
Kortus
, “
Fermi-Löwdin orbital self-interaction corrected density functional theory: Ionization potentials and enthalpies of formation
,”
J. Comput. Chem.
39
,
2463
2471
(
2018
).
95.
F. W.
Aquino
,
R.
Shinde
, and
B. M.
Wong
, “
Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach
,”
J. Comput. Chem.
41
,
1200
1208
(
2020
).
96.
Y.
Yamamoto
,
C. M.
Diaz
,
L.
Basurto
,
K. A.
Jackson
,
T.
Baruah
, and
R. R.
Zope
, “
Fermi-Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional
,”
J. Chem. Phys.
151
,
154105
(
2019
).
97.
K. P. K.
Withanage
,
K.
Trepte
,
J. E.
Peralta
,
T.
Baruah
,
R.
Zope
, and
K. A.
Jackson
, “
On the question of the total energy in the Fermi-Löwdin orbital self-interaction correction method
,”
J. Chem. Theory Comput.
14
,
4122
4128
(
2018
).
98.
D.-y.
Kao
,
K.
Withanage
,
T.
Hahn
,
J.
Batool
,
J.
Kortus
, and
K.
Jackson
, “
Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li–Kr
,”
J. Chem. Phys.
147
,
164107
(
2017
).
99.
K. P. K.
Withanage
,
P.
Bhattarai
,
J. E.
Peralta
,
R. R.
Zope
,
T.
Baruah
,
J. P.
Perdew
, and
K. A.
Jackson
, “
Density-related properties from self-interaction corrected density functional theory calculations
,”
J. Chem. Phys.
154
,
024102
(
2021
).
100.
C. M.
Diaz
,
L.
Basurto
,
S.
Adhikari
,
Y.
Yamamoto
,
A.
Ruzsinszky
,
T.
Baruah
, and
R. R.
Zope
, “
Self-interaction-corrected Kohn–Sham effective potentials using the density-consistent effective potential method
,”
J. Chem. Phys.
155
,
064109
(
2021
).
101.
D. B.
Nguyen
,
M. R.
Pederson
,
J. P.
Perdew
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Initial Fermi orbital descriptors for FLOSIC calculations: The quick-FOD method
,”
Chem. Phys. Lett.
780
,
138952
(
2021
).
102.
S.
Schwalbe
,
K.
Trepte
,
L.
Fiedler
,
A. I.
Johnson
,
J.
Kraus
,
T.
Hahn
,
J. E.
Peralta
,
K. A.
Jackson
, and
J.
Kortus
, “
Interpretation and automatic generation of Fermi-orbital descriptors
,”
J. Comput. Chem.
40
,
2843
2857
(
2019
).
103.
K.
Trepte
,
S.
Schwalbe
,
S.
Liebing
,
W. T.
Schulze
,
J.
Kortus
,
H.
Myneni
,
A. V.
Ivanov
, and
S.
Lehtola
, “
Chemical bonding theories as guides for self-interaction corrected solutions: Multiple local minima and symmetry breaking
,”
J. Chem. Phys.
155
,
224109
(
2021
).
104.
K.
Wagle
,
B.
Santra
,
P.
Bhattarai
,
C.
Shahi
,
M. R.
Pederson
,
K. A.
Jackson
, and
J. P.
Perdew
, “
Self-interaction correction in water-ion clusters
,”
J. Chem. Phys.
154
,
094302
(
2021
).
105.
K.
Sharkas
,
K.
Wagle
,
B.
Santra
,
S.
Akter
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
,
J. P.
Perdew
, and
J. E.
Peralta
, “
Self-interaction error overbinds water clusters but cancels in structural energy differences
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
11283
11288
(
2020
).
106.
J.
Vargas
,
P.
Ufondu
,
T.
Baruah
,
Y.
Yamamoto
,
K. A.
Jackson
, and
R. R.
Zope
, “
Importance of self-interaction-error removal in density functional calculations on water cluster anions
,”
Phys. Chem. Chem. Phys.
22
,
3789
3799
(
2020
).
107.
K.
Sharkas
,
L.
Li
,
K.
Trepte
,
K. P. K.
Withanage
,
R. P.
Joshi
,
R. R.
Zope
,
T.
Baruah
,
J. K.
Johnson
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Shrinking self-interaction errors with the Fermi-Löwdin orbital self-interaction-corrected density functional approximation
,”
J. Phys. Chem. A
122
,
9307
9315
(
2018
).
108.
K.
Trepte
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
D.-Y.
Kao
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
K. P. K.
Withanage
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Analytic atomic gradients in the Fermi-Löwdin orbital self-interaction correction
,”
J. Comput. Chem.
40
,
820
825
(
2019
).
109.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
110.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
111.
B. J.
Lynch
and
D. G.
Truhlar
, “
Small representative benchmarks for thermochemical calculations
,”
J. Phys. Chem. A
107
,
8996
8999
(
2003
).
112.
R. R.
Zope
,
T.
Baruah
, and
K. A.
Jackson
, “
FLOSIC 0.2
,” Based on the NRLMOL code of M. R. Pederson.
113.
Y.
Yamamoto
,
L.
Basurto
,
C. M.
Diaz
,
R. R.
Zope
, and
T.
Baruah
, “
FLOSIC software public release
,” Based on the NRLMOL code of M. R. Pederson.
114.
O. A.
Vydrov
and
G. E.
Scuseria
, “
A simple method to selectively scale down the self-interaction correction
,”
J. Chem. Phys.
124
,
191101
(
2006
).
115.
C. v.
Weizsäcker
, “
Zur theorie der kernmassen
,”
Z. Phys.
96
,
431
458
(
1935
).
116.
B.
Santra
and
J. P.
Perdew
, “
Perdew-Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms?
J. Chem. Phys.
150
,
174106
(
2019
).
117.
F.
Zahariev
,
S. S.
Leang
, and
M. S.
Gordon
, “
Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals
,”
J. Chem. Phys.
138
,
244108
(
2013
).
118.
P.-H.
Chang
,
Z.
Buschmann
, and
R. R.
Zope
, A hybrid approach to basis set independent Poisson solver for an arbitrary charge distribution (
2022
).
119.
A. D.
Becke
and
R. M.
Dickson
, “
Numerical solution of Poisson’s equation in polyatomic molecules
,”
J. Chem. Phys.
89
,
2993
2997
(
1988
).
120.
V. I.
Lebedev
, “
Quadratures on a sphere
,”
USSR Comput. Math. Math. Phys.
16
,
10
24
(
1976
).
121.
M. E.
Mura
and
P. J.
Knowles
, “
Improved radial grids for quadrature in molecular density-functional calculations
,”
J. Chem. Phys.
104
,
9848
9858
(
1996
).
122.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
2553
(
1988
).
123.
B.
Delley
, “
An all-electron numerical method for solving the local density functional for polyatomic molecules
,”
J. Chem. Phys.
92
,
508
517
(
1990
).
124.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
Achieving linear scaling in exchange-correlation density functional quadratures
,”
Chem. Phys. Lett.
257
,
213
223
(
1996
).
125.
M.
Franchini
,
P. H. T.
Philipsen
, and
L.
Visscher
, “
The Becke fuzzy cells integration scheme in the Amsterdam density functional program suite
,”
J. Comput. Chem.
34
,
1819
1827
(
2013
).
126.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
127.
B. I.
Dunlap
, “
Fitting the Coulomb potential variationally in Xα molecular calculations
,”
J. Chem. Phys.
78
,
3140
3142
(
1983
).
128.
K.
Jackson
and
M. R.
Pederson
, “
Accurate forces in a local-orbital approach to the local-density approximation
,”
Phys. Rev. B
42
,
3276
3281
(
1990
).
129.
M. R.
Pederson
,
D. V.
Porezag
,
J.
Kortus
, and
D. C.
Patton
, “
Strategies for massively parallel local-orbital-based electronic structure methods
,”
Phys. Status Solidi B
217
,
197
218
(
2000
).
130.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
131.
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
J. P.
Perdew
, “
Exact-exchange energy density in the gauge of a semilocal density-functional approximation
,”
Phys. Rev. A
77
,
012509
(
2008
).
132.
A. V.
Arbuznikov
and
M.
Kaupp
, “
Towards improved local hybrid functionals by calibration of exchange-energy densities
,”
J. Chem. Phys.
141
,
204101
(
2014
).
133.
T. M.
Maier
,
M.
Haasler
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
New approaches for the calibration of exchange-energy densities in local hybrid functionals
,”
Phys. Chem. Chem. Phys.
18
,
21133
21144
(
2016
).
134.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
6687
(
1992
).
135.
D.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian basis sets for density-functional calculations
,”
Phys. Rev. A
60
,
2840
2847
(
1999
).
136.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
A new basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
137.
M. R.
Pederson
and
K. A.
Jackson
, “
Variational mesh for quantum-mechanical simulations
,”
Phys. Rev. B
41
,
7453
7461
(
1990
).
138.
A. P.
Bartók
and
J. R.
Yates
, “
Regularized SCAN functional
,”
J. Chem. Phys.
150
,
161101
(
2019
).
139.
J. W.
Furness
and
J.
Sun
, “
Enhancing the efficiency of density functionals with an improved iso-orbital indicator
,”
Phys. Rev. B
99
,
041119
(
2019
).
140.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
8215
(
2020
).
141.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
, “
Importance of complex orbitals in calculating the self-interaction-corrected ground state of atoms
,”
Phys. Rev. A
84
,
050501
(
2011
).
142.
D.
Hofmann
,
T.
Körzdörfer
, and
S.
Kümmel
, “
Kohn-Sham self-interaction correction in real time
,”
Phys. Rev. Lett.
108
,
146401
(
2012
).
143.
D.
Hofmann
,
S.
Klüpfel
,
P.
Klüpfel
, and
S.
Kümmel
, “
Using complex degrees of freedom in the Kohn-Sham self-interaction correction
,”
Phys. Rev. A
85
,
062514
(
2012
).
144.
K. P. K.
Withanage
,
K. A.
Jackson
, and
M. R.
Pederson
, “
Complex Fermi-Löwdin orbital self-interaction correction
,”
J. Chem. Phys.
156
,
231103
(
2022
).
145.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F.
p Fischer
, “
Ground-state correlation energies for atomic ions with 3 to 18 electrons
,”
Phys. Rev. A
47
,
3649
3670
(
1993
).
146.
Y.
Zhao
,
J.
Pu
,
B. J.
Lynch
, and
D. G.
Truhlar
, “
Tests of second-generation and third-generation density functionals for thermochemical kinetics
,”
Phys. Chem. Chem. Phys.
6
,
673
676
(
2004
).
147.
B. G.
Janesko
and
G. E.
Scuseria
, “
Hartree–Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals
,”
J. Chem. Phys.
128
,
244112
(
2008
).
148.
J. F.
Janak
, “
Proof that eni=ϵ in density-functional theory
,”
Phys. Rev. B
18
,
7165
7168
(
1978
).
149.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
(
1982
).
150.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
, “
Exact differential equation for the density and ionization energy of a many-particle system
,”
Phys. Rev. A
30
,
2745
2748
(
1984
).
151.
J. P.
Perdew
and
M.
Levy
, “
Comment on “Significance of the highest occupied Kohn-Sham eigenvalue”
,”
Phys. Rev. B
56
,
16021
(
1997
).
152.
M. K.
Harbola
, “
Relationship between the highest occupied Kohn-Sham orbital eigenvalue and ionization energy
,”
Phys. Rev. B
60
,
4545
4550
(
1999
).
153.
L.
Gallandi
,
N.
Marom
,
P.
Rinke
, and
T.
Körzdörfer
, “
Accurate ionization potentials and electron affinities of acceptor molecules II: Non-empirically tuned long-range corrected hybrid functionals
,”
J. Chem. Theory Comput.
12
,
605
614
(
2016
).
154.
R.
Baer
and
D.
Neuhauser
, “
Density functional theory with correct long-range asymptotic behavior
,”
Phys. Rev. Lett.
94
,
043002
(
2005
).
155.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2004
), Vol. 85.
156.
K. K.
Irikura
, “
Experimental vibrational zero-point energies: Diatomic molecules
,”
J. Phys. Chem. Ref. Data
36
,
389
397
(
2007
).
157.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies. Consolidated volume II
,”
J. Phys. Chem. Ref. Data
6
,
993
1102
(
1977
).

Supplementary Material

You do not currently have access to this content.