Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature Tg exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting Tg value also rationalizes the presence of the pre-Tg relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub-Tg fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing).

1.
V. M.
Fokin
,
A. S.
Abyzov
,
N. S.
Yuritsyn
,
J. W. P.
Schmelzer
, and
E. D.
Zanotto
, “
Effect of structural relaxation on crystal nucleation in glasses
,”
Acta Mater.
203
,
116472
(
2021
).
2.
T.
Hikima
,
Y.
Adachi
,
M.
Hanaya
, and
M.
Oguni
, “
Determination of potentially homogeneous-nucleation-based crystallization in o-terphenyl and an interpretation of the nucleation-enhancement mechanism
,”
Phys. Rev. B
52
,
3900
3908
(
1995
).
3.
H.
Ishida
,
T.
Wu
, and
L.
Yu
, “
Sudden rise of crystal growth rate of nifedipine near Tg without and with polyvinylpyrrolidone
,”
J. Pharm. Sci.
96
,
1131
1138
(
2007
).
4.
B.
Schammé
,
X.
Monnier
,
N.
Couvrat
,
L.
Delbreilh
,
V.
Dupray
,
É.
Dargent
, and
G.
Coquerel
, “
Insights on the physical state reached by an active pharmaceutical ingredient upon high-energy milling
,”
J. Phys. Chem. B
121
,
5142
5150
(
2017
).
5.
J.-F.
Willart
,
L.
Carpentier
,
F.
Danède
, and
M.
Descamps
, “
Solid-state vitrification of crystalline griseofulvin by mechanical milling
,”
J. Pharm. Sci.
101
,
1570
1577
(
2012
).
6.
T.
Wu
and
L.
Yu
, “
Surface crystallization of indomethacin below Tg
,”
Pharm. Res.
23
,
2350
2355
(
2006
).
7.
L.
Zhu
,
L.
Wong
, and
L.
Yu
, “
Surface-enhanced crystallization of amorphous nifedipine
,”
Mol. Pharm.
5
,
921
926
(
2008
).
8.
Y.
Sun
,
H.
Xi
,
S.
Chen
,
M. D.
Ediger
, and
L.
Yu
, “
Crystallization near glass transition: Transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs
,”
J. Phys. Chem. B
112
,
5594
5601
(
2008
).
9.
C. T.
Powell
,
H.
Xi
,
Y.
Sun
,
E.
Gunn
,
Y.
Chen
,
M. D.
Ediger
, and
L.
Yu
, “
Fast crystal growth in o-terphenyl glasses: A possible role for fracture and surface mobility
,”
J. Phys. Chem. B
119
,
10124
10130
(
2015
).
10.
Y.
Yue
and
C. A.
Angell
, “
Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses
,”
Nature
427
,
717
720
(
2004
).
11.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
, “
The glass transition of water, based on hyperquenching experiments
,”
Science
294
,
2335
2338
(
2001
).
12.
M. J.
Starink
, “
Analysis of aluminium based alloys by calorimetry: Quantitative analysis of reactions and reaction kinetics
,”
Int. Mater. Rev.
49
,
191
226
(
2004
).
13.
M. A. B.
Mendes
,
C. S.
Kiminami
,
W. J.
Botta Filho
,
C.
Bolfarini
,
M. F.
de Oliveira
, and
M. J.
Kaufman
, “
Crystallization behavior of amorphous Ti51.1Cu38.9Ni10 alloy
,”
Mater. Res.
18
,
104
108
(
2015
).
14.
J.
Pries
,
S.
Wei
,
M.
Wuttig
, and
P.
Lucas
, “
Switching between crystallization from the glassy and the undercooled liquid phase in phase change material Ge2Sb2Te5
,”
Adv. Mater.
31
,
1900784
(
2019
).
15.
J.
Pries
,
J. C.
Sehringer
,
S.
Wei
,
P.
Lucas
, and
M.
Wuttig
, “
Glass transition of the phase change material AIST and its impact on crystallization
,”
Mater. Sci. Semicond. Process.
134
,
105990
(
2021
).
16.
J.
Pries
,
Y.
Yu
,
P.
Kerres
,
M.
Häser
,
S.
Steinberg
,
F.
Gladisch
,
S.
Wei
,
P.
Lucas
, and
M.
Wuttig
, “
Approaching the glass transition temperature of GeTe by crystallizing Ge15Te85
,”
Phys. Status Solidi RRL
15
,
2000478
(
2021
).
17.
G. P.
Johari
, “
Does water need a new Tg?
,”
J. Chem. Phys.
116
,
8067
8073
(
2002
).
18.
P.
Lucas
,
J.
Pries
,
S.
Wei
, and
M.
Wuttig
, “
The glass transition of water, insight from phase change materials
,”
J. Non-Cryst. Solids: X
14
,
100084
(
2022
).
19.
C.
Persch
,
M. J.
Müller
,
A.
Yadav
,
J.
Pries
,
N.
Honné
,
P.
Kerres
,
S.
Wei
,
H.
Tanaka
,
P.
Fantini
,
E.
Varesi
,
F.
Pellizzer
, and
M.
Wuttig
, “
The potential of chemical bonding to design crystallization and vitrification kinetics
,”
Nat. Commun.
12
,
4978
(
2021
).
20.
J.
Pries
,
H.
Weber
,
J.
Benke‐Jacob
,
I.
Kaban
,
S.
Wei
,
M.
Wuttig
, and
P.
Lucas
, “
Fragile-to-strong transition in phase-change material Ge3Sb6Te5
,”
Adv. Funct. Mater.
32
,
2202714
(
2022
).
21.
Y.
Yue
, “
Revealing the nature of glass by the hyperquenching-annealing-calorimetry approach
,”
J. Non-Cryst. Solids: X
14
,
100099
(
2022
).
22.
E.
Morales-Sánchez
,
E. F.
Prokhorov
,
A.
Mendoza-Galván
, and
J.
González-Hernández
, “
Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films
,”
J. Appl. Phys.
91
,
697
702
(
2002
).
23.
J. A.
Kalb
,
M.
Wuttig
, and
F.
Spaepen
, “
Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording
,”
J. Mater. Res
22
,
748
754
(
2007
).
24.
J.
Orava
,
A. L.
Greer
,
B.
Gholipour
,
D. W.
Hewak
, and
C. E.
Smith
, “
Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry
,”
Nat. Mater.
11
,
279
283
(
2012
).
25.
J.-Y.
Cho
,
D.
Kim
,
Y.-J.
Park
,
T.-Y.
Yang
,
Y.-Y.
Lee
, and
Y.-C.
Joo
, “
The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics
,”
Acta Mater.
94
,
143
151
(
2015
).
26.
A.
Sebastian
,
M.
Le Gallo
, and
D.
Krebs
, “
Crystal growth within a phase change memory cell
,”
Nat. Commun.
5
,
4314
(
2014
).
27.
J.
Orava
,
D. W.
Hewak
, and
A. L.
Greer
, “
Fragile-to-strong crossover in supercooled liquid Ag-In-Sb-Te studied by ultrafast calorimetry
,”
Adv. Funct. Mater.
25
,
4851
4858
(
2015
).
28.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
, “
Molecular glasses with high fictive temperatures for energy landscape evaluations
,”
J. Phys. Chem. B
106
,
1069
1080
(
2002
).
29.
H. S.
Chen
and
E.
Coleman
, “
Structure relaxation spectrum of metallic glasses
,”
Appl. Phys. Lett.
28
,
245
247
(
1976
).
30.
L.
Hu
,
C.
Zhang
, and
Y.
Yue
, “
Structural evolution during the sub-Tg relaxation of hyperquenched metallic glasses
,”
Appl. Phys. Lett.
96
,
221908
(
2010
).
31.
Y. Z.
Yue
,
S. L.
Jensen
, and
J.
deC Christiansen
, “
Physical aging in a hyperquenched glass
,”
Appl. Phys. Lett.
81
,
2983
2985
(
2002
).
32.
J.
Huang
and
P. K.
Gupta
, “
Enthalpy relaxation in thin glass fibers
,”
J. Non-Cryst. Solids
151
,
175
181
(
1992
).
33.
L.
Hu
and
Y.
Yue
, “
Secondary relaxation behavior in a strong glass
,”
J. Phys. Chem. B
112
,
9053
9057
(
2008
).
34.
D. W.
Henderson
, “
Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids
,”
J. Non-Cryst. Solids
30
,
301
315
(
1979
).
35.
H. E.
Kissinger
, “
Reaction kinetics in differential thermal analysis
,”
Anal. Chem.
29
,
1702
1706
(
1957
).
36.
D.
Turnbull
, “
Under what conditions can a glass be formed?
,”
Contemp. Phys.
10
,
473
488
(
1969
).
37.
M.
Volmer
and
A.
Weber
, “
Nucleus formation in supersaturated systems
,”
Z. Phys. Chem.
119U
,
277
301
(
1926
).
38.
C. T.
Moynihan
and
P. B.
Macedo
, “
Dependence of the glass transition temperature on heating rate and thermal history
,”
J. Phys. Chem.
75
,
3379
3381
(
1971
).
39.
I. M.
Hodge
, “
Adam-Gibbs formulation of nonlinearity in glassy-state relaxations
,”
Macromolecules
19
,
936
938
(
1986
).
40.
J. C.
Mauro
,
Y.
Yue
,
A. J.
Ellison
,
P. K.
Gupta
, and
D. C.
Allan
, “
Viscosity of glass-forming liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19780
19784
(
2009
).
41.
P.
Zalden
,
F.
Quirin
,
M.
Schumacher
,
J.
Siegel
,
S.
Wei
,
A.
Koc
,
M.
Nicoul
,
M.
Trigo
,
P.
Andreasson
,
H.
Enquist
,
M. J.
Shu
,
T.
Pardini
,
M.
Chollet
,
D.
Zhu
,
H.
Lemke
,
I.
Ronneberger
,
J.
Larsson
,
A. M.
Lindenberg
,
H. E.
Fischer
,
S.
Hau-Riege
,
D. A.
Reis
,
R.
Mazzarello
,
M.
Wuttig
, and
K.
Sokolowski-Tinten
, “
Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials
,”
Science
364
,
1062
(
2019
).
42.
R. F.
Lancelotti
,
D. R.
Cassar
,
M.
Nalin
,
O.
Peitl
, and
E. D.
Zanotto
, “
Is the structural relaxation of glasses controlled by equilibrium shear viscosity?
,”
J. Am. Ceram. Soc.
104
,
2066
2076
(
2021
).
43.
C.
Bernard
,
G.
Delaizir
,
J.-C.
Sangleboeuf
,
V.
Keryvin
,
P.
Lucas
,
B.
Bureau
,
X.-H.
Zhang
, and
T.
Rouxel
, “
Room temperature viscosity and delayed elasticity in infrared glass fiber
,”
J. Eur. Ceram. Soc.
27
,
3253
(
2007
).
44.
H.
Weber
,
J.
Orava
,
I.
Kaban
,
J.
Pries
, and
A. L.
Greer
, “
Correlating ultrafast calorimetry, viscosity, and structural measurements in liquid GeTe and Ge15Te85
,”
Phys. Rev. Mater.
2
,
093405
(
2018
).
45.
V. M.
Glazov
and
O. D.
Shchelikov
, “
Change in short-range order structure in selenium and tellurium melts during heating
,”
Izv. Akad. Nauk SSSR, Neorg. Mater.
10
,
202
207
(
1974
).
46.
K.
Doss
,
C. J.
Wilkinson
,
Y.
Yang
,
K. H.
Lee
,
L.
Huang
, and
J. C.
Mauro
, “
Maxwell relaxation time for nonexponential α-relaxation phenomena in glassy systems
,”
J. Am. Ceram. Soc.
103
,
3590
3599
(
2020
).
47.
R.
Kohlrausch
, “
Theorie des elektrischen Rückstandes in der Leidener Flasche
,”
Ann. Phys. Chem.
167
,
56
82
(
1854
).
48.
G.
Williams
and
D. C.
Watts
, “
Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function
,”
Trans. Faraday Soc.
66
,
80
85
(
1970
).
49.
C. T.
Moynihan
, “
Structural relaxation and the glass transition
,”
Rev. Mineral.
32
,
1
19
(
1995
).
50.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
, “
Nonexponential relaxations in strong and fragile glass formers
,”
J. Chem. Phys.
99
,
4201
4209
(
1993
).
51.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
, “
Supercooled liquids and glasses
,”
J. Phys. Chem.
100
,
13200
13212
(
1996
).
52.
M. D.
Ediger
,
P.
Harrowell
, and
L.
Yu
, “
Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity
,”
J. Chem. Phys.
128
,
034709
(
2008
).
53.
M. L. F.
Nascimento
,
L. A.
Souza
,
E. B.
Ferreira
, and
E. D.
Zanotto
, “
Can glass stability parameters infer glass forming ability?
,”
J. Non-Cryst. Solids
351
,
3296
3308
(
2005
).
54.
B. J.
Kooi
and
M.
Wuttig
, “
Chalcogenides by design: Functionality through metavalent bonding and confinement
,”
Adv. Mater.
32
,
1908302
(
2020
).
55.
M.
Wuttig
,
V. L.
Deringer
,
X.
Gonze
,
C.
Bichara
, and
J.-Y.
Raty
, “
Incipient metals: Functional MATERIALS with a unique bonding mechanism
,”
Adv. Mater.
30
,
1803777
(
2018
).
56.
C.-F.
Schön
,
S.
van Bergerem
,
C.
Mattes
,
A.
Yadav
,
M.
Grohe
,
L.
Kobbelt
, and
M.
Wuttig
, “
Classification of properties and their relation to chemical bonding: Essential steps towards the inverse design of materials with tailored functionalities
,”
Sci. Adv.
8
,
eade0828
(
2022
).
57.
M.
Zhu
,
O.
Cojocaru-Mirédin
,
A. M.
Mio
,
J.
Keutgen
,
M.
Küpers
,
Y.
Yu
,
J.-Y.
Cho
,
R.
Dronskowski
, and
M.
Wuttig
, “
Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding
,”
Adv. Mater.
30
,
1706735
(
2018
).
58.
J. A.
Kalb
,
F.
Spaepen
, and
M.
Wuttig
, “
Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording
,”
J. Appl. Phys.
98
,
054910
(
2005
).
59.
J. Y.
Raty
,
M.
Schumacher
,
P.
Golub
,
V. L.
Deringer
,
C.
Gatti
, and
M.
Wuttig
, “
A quantum-mechanical map for bonding and properties in solids
,”
Adv. Mater.
31
,
1806280
(
2019
).
60.
Y.
Cheng
,
O.
Cojocaru‐Mirédin
,
J.
Keutgen
,
Y.
Yu
,
M.
Küpers
,
M.
Schumacher
,
P.
Golub
,
J. Y.
Raty
,
R.
Dronskowski
, and
M.
Wuttig
, “
Understanding the structure and properties of Sesqui-chalcogenides (i.e., V2VI3 or Pn2Ch3 (Pn = Pnictogen, Ch = Chalcogen) compounds) from a bonding perspective
,”
Adv. Mater.
31
,
1904316
(
2019
).
61.
S.
Maier
,
S.
Steinberg
,
Y.
Cheng
,
C. F.
Schön
,
M.
Schumacher
,
R.
Mazzarello
,
P.
Golub
,
R.
Nelson
,
O.
Cojocaru‐Mirédin
,
J. Y.
Raty
, and
M.
Wuttig
, “
Discovering electron-transfer-driven changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O)
,”
Adv. Mater.
32
,
2005533
(
2020
).
62.
J.
Hegedüs
and
S. R.
Elliott
, “
Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials
,”
Nat. Mater.
7
,
399
405
(
2008
).
63.
T.
Matsunaga
,
J.
Akola
,
S.
Kohara
,
T.
Honma
,
K.
Kobayashi
,
E.
Ikenaga
,
R. O.
Jones
,
N.
Yamada
,
M.
Takata
, and
R.
Kojima
, “
From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials
,”
Nat. Mater.
10
,
129
134
(
2011
).
64.
J. Y.
Raty
,
W.
Zhang
,
J.
Luckas
,
C.
Chen
,
R.
Mazzarello
,
C.
Bichara
, and
M.
Wuttig
, “
Aging mechanisms in amorphous phase-change materials
,”
Nat. Commun.
6
,
7467
(
2015
).

Supplementary Material

You do not currently have access to this content.