Accurate prediction of a spin-state energy difference is crucial for understanding the spin crossover phenomena and is very challenging for density functional approximations, especially for local and semi-local approximations due to delocalization errors. Here, we investigate the effect of the self-interaction error removal from the local spin density approximation (LSDA) and Perdew–Burke–Ernzerhof generalized gradient approximation on the spin-state gaps of Fe(II) complexes with various ligands using recently developed locally scaled self-interaction correction (LSIC) by Zope et al. [J. Chem. Phys. 151, 214108 (2019)]. The LSIC method is exact for one-electron density, recovers the uniform electron gas limit of the underlying functional, and approaches the well-known Perdew–Zunger self-interaction correction (PZSIC) as a particular case when the scaling factor is set to unity. Our results, when compared with reference diffusion Monte Carlo results, show that the PZSIC method significantly overestimates spin-state gaps favoring low spin states for all ligands and does not improve upon density functional approximations. The perturbative LSIC-LSDA using PZSIC densities significantly improves the gaps with a mean absolute error of 0.51 eV but slightly overcorrects for the stronger CO ligands. The quasi-self-consistent LSIC-LSDA, such as coupled-cluster single double and perturbative triple [CCSD(T)], gives a correct sign of spin-state gaps for all ligands with a mean absolute error of 0.56 eV, comparable to that of CCSD(T) (0.49 eV).

1.
R. O.
Jones
, “
Density functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
,
897
(
2015
).
2.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
20
(
2001
).
3.
M. A. L.
Marques
,
M. J. T.
Oliveira
, and
T.
Burnus
, “
Libxc: A library of exchange and correlation functionals for density functional theory
,”
Comput. Phys. Commun.
183
,
2272
2281
(
2012
).
4.
Y.
Cytter
,
A.
Nandy
,
A.
Bajaj
, and
H. J.
Kulik
, “
Ligand additivity and divergent trends in two types of delocalization errors from approximate density functional theory
,”
J. Chem. Phys.
13
,
004549
4555
(
2022
).
5.
L.
Wilbraham
,
C.
Adamo
, and
I.
Ciofini
, “
Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes
,”
J. Chem. Phys.
148
,
041103
(
2018
).
6.
M.
Radoń
, “
Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data
,”
Phys. Chem. Chem. Phys.
21
,
4854
4870
(
2019
).
7.
H. J.
Kulik
, “
Making machine learning a useful tool in the accelerated discovery of transition metal complexes
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1439
(
2020
).
8.
A.
Nandy
,
D. B. K.
Chu
,
D. R.
Harper
,
C.
Duan
,
N.
Arunachalam
,
Y.
Cytter
, and
H. J.
Kulik
, “
Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics
,”
Phys. Chem. Chem. Phys.
22
,
19326
19341
(
2020
).
9.
M.
Alipour
and
T.
Izadkhast
, “
Appraising spin-state energetics in transition metal complexes using double-hybrid models: Accountability of SOS0-PBESCAN0-2(a) as a promising paradigm
,”
Phys. Chem. Chem. Phys.
22
,
9388
9404
(
2020
).
10.
S.
Vela
,
M.
Fumanal
,
J.
Cirera
, and
J.
Ribas-Arino
, “
Thermal spin crossover in Fe(II) and Fe(III). Accurate spin state energetics at the solid state
,”
Phys. Chem. Chem. Phys.
22
,
4938
4945
(
2020
).
11.
L. A.
Mariano
,
B.
Vlaisavljevich
, and
R.
Poloni
, “
Biased spin-state energetics of Fe(II) molecular complexes within density-functional theory and the linear-response Hubbard U correction
,”
J. Chem. Theory Comput.
16
,
6755
6762
(
2020
).
12.
L. A.
Mariano
,
B.
Vlaisavljevich
, and
R.
Poloni
, “
Improved spin-state energy differences of Fe(II) molecular and crystalline complexes via the Hubbard U-corrected density
,”
J. Chem. Theory Comput.
17
,
2807
2816
(
2021
).
13.
B. M.
Flöser
,
Y.
Guo
,
C.
Riplinger
,
F.
Tuczek
, and
F.
Neese
, “
Detailed pair natural orbital-based coupled cluster studies of spin crossover energetics
,”
J. Chem. Theory Comput.
16
,
2224
2235
(
2020
).
14.
S.
Song
,
M.-C.
Kim
,
E.
Sim
,
A.
Benali
,
O.
Heinonen
, and
K.
Burke
, “
Benchmarks and reliable DFT results for spin gaps of small ligand Fe(II) complexes
,”
J. Chem. Theory Comput.
14
,
2304
2311
(
2018
).
15.
A.
Patra
,
H.
Peng
,
J.
Sun
, and
J. P.
Perdew
, “
Rethinking CO adsorption on transition-metal surfaces: Effect of density-driven self-interaction errors
,”
Phys. Rev. B
100
,
035442
(
2019
).
16.
A.
Droghetti
,
D.
Alfè
, and
S.
Sanvito
, “
Assessment of density functional theory for iron(II) molecules across the spin-crossover transition
,”
J. Chem. Phys.
137
,
124303
(
2012
).
17.
G.
Ganzenmüller
,
N.
Berkaïne
,
A.
Fouqueau
,
M. E.
Casida
, and
M.
Reiher
, “
Comparison of density functionals for differences between the high- (5T2g) and low- (1A1g) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe (L)(‘NHS4’)]
,”
J. Chem. Phys.
122
,
234321
(
2005
).
18.
D. N.
Bowman
and
E.
Jakubikova
, “
Low-spin vs high-spin ground state in pseudo-octahedral iron complexes
,”
Inorg. Chem.
51
,
6011
6019
(
2012
).
19.
A.
Fouqueau
,
S.
Mer
,
M. E.
Casida
,
L. M.
Lawson Daku
,
A.
Hauser
,
T.
Mineva
, and
F.
Neese
, “
Comparison of density functionals for energy and structural differences between the high- [5T 2g:(t2g)4(eg)2] and low- [1A1g:(t2g)6(eg)0] spin states of the hexaquoferrous cation [Fe(H2O)6]2+
,”
J. Chem. Phys.
120
,
9473
9486
(
2004
).
20.
A.
Fouqueau
,
M. E.
Casida
,
L. M. L.
Daku
,
A.
Hauser
, and
F.
Neese
, “
Comparison of density functionals for energy and structural differences between the high- [5T2g:(t2g)4(eg)2] and low-[1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, [Fe(NH3)6]2+
,”
J. Chem. Phys.
122
,
044110
(
2005
).
21.
K.
Pierloot
and
S.
Vancoillie
, “
Relative energy of the high- (5T2g) and low- (1A1g) spin states of [Fe(H2O)6]2+, [Fe(NH3)6]2+, and [Fe(bpy)3]2+: CASPT2 vs density functional theory
,”
J. Chem. Phys.
125
,
124303
(
2006
).
22.
K.
Pierloot
and
S.
Vancoillie
, “
Relative energy of the high- (5T2g) and low- (1A1g) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 vs density functional theory
,”
J. Chem. Phys.
128
,
034104
(
2008
).
23.
L.
Wilbraham
,
P.
Verma
,
D. G.
Truhlar
,
L.
Gagliardi
, and
I.
Ciofini
, “
Multiconfiguration pair-density functional theory predicts spin-state ordering in iron complexes with the same accuracy as complete active space second-order perturbation theory at a significantly reduced computational cost
,”
J. Phys. Chem. Lett.
8
,
2026
2030
(
2017
).
24.
P.
Verma
,
Z.
Varga
,
J. E. M. N.
Klein
,
C. J.
Cramer
,
L.
Que
, and
D. G.
Truhlar
, “
Assessment of electronic structure methods for the determination of the ground spin states of Fe(II), Fe(III) and Fe(IV) complexes
,”
Phys. Chem. Chem. Phys.
19
,
13049
13069
(
2017
).
25.
S.
Ye
and
F.
Neese
, “
Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory
,”
Inorg. Chem.
49
,
772
774
(
2010
).
26.
E. I.
Ioannidis
and
H. J.
Kulik
, “
Towards quantifying the role of exact exchange in predictions of transition metal complex properties
,”
J. Chem. Phys.
143
,
034104
(
2015
).
27.
A.
Rudavskyi
,
C.
Sousa
,
C.
de Graaf
,
R. W. A.
Havenith
, and
R.
Broer
, “
Computational approach to the study of thermal spin crossover phenomena
,”
J. Chem. Phys.
140
,
184318
(
2014
).
28.
M.
Fumanal
,
L. K.
Wagner
,
S.
Sanvito
, and
A.
Droghetti
, “
Diffusion Monte Carlo perspective on the spin-state energetics of [Fe(NCH)6]2+
,”
J. Chem. Theory Comput.
12
,
4233
4241
(
2016
).
29.
B.
Pinter
,
A.
Chankisjijev
,
P.
Geerlings
,
J. N.
Harvey
, and
F.
De Proft
, “
Conceptual insights into DFT spin-state energetics of octahedral transition-metal complexes through a density difference analysis
,”
Chem. Eur. J.
24
,
5281
5292
(
2018
).
30.
S. R.
Mortensen
and
K. P.
Kepp
, “
Spin propensities of octahedral complexes from density functional theory
,”
J. Phys. Chem. A
119
,
4041
4050
(
2015
).
31.
L. M.
Lawson Daku
,
F.
Aquilante
,
T. W.
Robinson
, and
A.
Hauser
, “
Accurate spin-state energetics of transition metal complexes. 1. CCSD(T), CASPT2, and DFT study of [M(NCH)6]2+(M = Fe, Co)
,”
J. Chem. Theory Comput.
8
,
4216
4231
(
2012
).
32.
M.
Kepenekian
,
V.
Robert
,
B.
Le Guennic
, and
C.
De Graaf
, “
Energetics of [Fe(NCH)6]2+ via CASPT2 calculations: A spin-crossover perspective
,”
J. Comput. Chem.
30
,
2327
2333
(
2009
).
33.
A.
Domingo
,
M.
Àngels Carvajal
, and
C.
De Graaf
, “
Spin crossover in Fe(II) complexes: An ab initio study of ligand σ-donation
,”
Int. J. Quantum Chem.
110
,
331
337
(
2010
).
34.
B. G.
Janesko
, “
Reducing density-driven error without exact exchange
,”
Phys. Chem. Chem. Phys.
19
,
4793
4801
(
2017
).
35.
M.
Swart
, “
Accurate spin-state energies for iron complexes
,”
J. Chem. Theory Comput.
4
,
2057
2066
(
2008
).
36.
J. P.
Perdew
, “
Accurate density functional for the energy: Real-space cutoff of the gradient expansion for the exchange hole
,”
Phys. Rev. Lett.
55
,
2370
(
1985
).
37.
L. J.
Sham
and
M.
Schlüter
, “
Density-functional theory of the energy gap
,”
Phys. Rev. Lett.
51
,
1888
1891
(
1983
).
38.
S.
Patchkovskii
and
T.
Ziegler
, “
Improving “difficult” reaction barriers with self-interaction corrected density functional theory
,”
J. Chem. Phys.
116
,
7806
7813
(
2002
).
39.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
, “
The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits
,”
J. Chem. Phys.
120
,
524
539
(
2004
).
40.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
, “
Spurious fractional charge on dissociated atoms: Pervasive and resilient self-interaction error of common density functionals
,”
J. Chem. Phys.
125
,
194112
(
2006
).
41.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Localization and delocalization errors in density functional theory and implications for band-gap prediction
,”
Phys. Rev. Lett.
100
,
146401
(
2008
).
42.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
43.
X.
Zheng
,
M.
Liu
,
E. R.
Johnson
,
J.
Contreras-García
, and
W.
Yang
, “
Delocalization error of density-functional approximations: A distinct manifestation in hydrogen molecular chains
,”
J. Chem. Phys.
137
,
214106
(
2012
).
44.
A. D.
Dwyer
and
D. J.
Tozer
, “
Dispersion, static correlation, and delocalisation errors in density functional theory: An electrostatic theorem perspective
,”
J. Chem. Phys.
135
,
164110
(
2011
).
45.
C.
Li
,
X.
Zheng
,
N. Q.
Su
, and
W.
Yang
, “
Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations
,”
Natl. Sci. Rev.
5
,
203
215
(
2018
).
46.
E. R.
Johnson
,
A.
Otero-de-la-Roza
, and
S. G.
Dale
, “
Extreme density-driven delocalization error for a model solvated-electron system
,”
J. Chem. Phys.
139
,
184116
(
2013
).
47.
K. R.
Bryenton
,
A. A.
Adeleke
,
S. G.
Dale
, and
E. R.
Johnson
, “
Delocalization error: The greatest outstanding challenge in density-functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(published online,
2022
).
48.
I.
Lindgren
, “
A statistical exchange approximation for localized electrons
,”
Int. J. Quantum Chem.
5
,
411
420
(
1971
).
49.
R. R.
Zope
,
Y.
Yamamoto
,
C. M.
Diaz
,
T.
Baruah
,
J. E.
Peralta
,
K. A.
Jackson
,
B.
Santra
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction
,”
J. Chem. Phys.
151
,
214108
(
2019
).
50.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
51.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
52.
W. L.
Luken
and
D. N.
Beratan
, “
Localized orbitals and the Fermi hole
,”
Theor. Chim. Acta
61
,
265
281
(
1982
).
53.
P. O.
Löwdin
, “
On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals
,”
J. Chem. Phys.
18
,
365
375
(
1950
).
54.
M. R.
Pederson
, “
Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms
,”
J. Chem. Phys.
142
,
064112
(
2015
).
55.
M. R.
Pederson
and
T.
Baruah
, “
Chapter eight - self-interaction corrections within the fermi-orbital-based formalism
,” in
Advances in Atomic, Molecular, and Optical Physics
, edited by
E.
Arimondo
,
C. C.
Lin
, and
S. F.
Yelin
(
Academic Press
,
2015
), Vol. 64, pp.
153
180
.
56.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Program.
45
,
503
528
(
1989
).
57.
Z.-h.
Yang
,
M. R.
Pederson
, and
J. P.
Perdew
, “
Full self-consistency in the fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
58.
M. R.
Pederson
,
T.
Baruah
,
D.-y.
Kao
, and
L.
Basurto
, “
Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules
,”
J. Chem. Phys.
144
,
164117
(
2016
).
59.
S.
Schwalbe
,
T.
Hahn
,
S.
Liebing
,
K.
Trepte
, and
J.
Kortus
, “
Fermi-Löwdin orbital self-interaction corrected density functional theory: Ionization potentials and enthalpies of formation
,”
J. Comput. Chem.
39
,
2463
2471
(
2018
).
60.
Y.
Yamamoto
,
C. M.
Diaz
,
L.
Basurto
,
K. A.
Jackson
,
T.
Baruah
, and
R. R.
Zope
, “
Fermi-Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional
,”
J. Chem. Phys.
151
,
154105
(
2019
).
61.
C. M.
Diaz
,
T.
Baruah
, and
R. R.
Zope
, “
Fermi-Löwdin-orbital self-interaction correction using the optimized-effective-potential method within the Krieger-Li-Iafrate approximation
,”
Phys. Rev. A
103
,
042811
(
2021
).
62.
C. M.
Diaz
,
L.
Basurto
,
S.
Adhikari
,
Y.
Yamamoto
,
A.
Ruzsinszky
,
T.
Baruah
, and
R. R.
Zope
, “
Self-interaction-corrected Kohn–Sham effective potentials using the density-consistent effective potential method
,”
J. Chem. Phys.
155
,
064109
(
2021
).
63.
F. W.
Aquino
,
R.
Shinde
, and
B. M.
Wong
, “
Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach
,”
J. Comput. Chem.
41
,
1200
1208
(
2020
).
64.
P.
Mishra
,
Y.
Yamamoto
,
J. K.
Johnson
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction-errors in barrier heights using locally scaled and Perdew–Zunger self-interaction methods
,”
J. Chem. Phys.
156
,
014306
(
2022
).
65.
P.
Mishra
,
Y.
Yamamoto
,
P.-H.
Chang
,
D. B.
Nguyen
,
J. E.
Peralta
,
T.
Baruah
, and
R. R.
Zope
, “
Study of self-interaction errors in density functional calculations of magnetic exchange coupling constants using three self-interaction correction methods
,”
J. Phys. Chem. A
126
,
1923
1935
(
2022
).
66.
R. R.
Zope
,
T.
Baruah
, and
K. A.
Jackson
, FLOSIC 0.2, Based on the NRLMOL code of M. R. Pederson.
67.
Y.
Yamamoto
,
L.
Basurto
,
C. M.
Diaz
,
R. R.
Zope
, and
T.
Baruah
, “
Self-interaction correction to density functional approximations using Fermi-Löwdin orbitals: methodology and parallelization
” (Unpublished).
68.
D.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian basis sets for density-functional calculations
,”
Phys. Rev. A
60
,
2840
2847
(
1999
).
69.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
70.
P.
Bhattarai
,
K.
Wagle
,
C.
Shahi
,
Y.
Yamamoto
,
S.
Romero
,
B.
Santra
,
R. R.
Zope
,
J. E.
Peralta
,
K. A.
Jackson
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew–Zunger self-interaction correction. II. gauge consistency of the energy density at three levels of approximation
,”
J. Chem. Phys.
152
,
214109
(
2020
).
71.
S.
Akter
,
Y.
Yamamoto
,
C. M.
Diaz
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew–Zunger and locally scaled self-interaction corrected methods
,”
J. Chem. Phys.
153
,
164304
(
2020
).
72.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
73.
F.
Weigend
, “
Accurate coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
74.
G.
Prokopiou
and
L.
Kronik
, “
Spin-state energetics of Fe complexes from an optimally tuned range-separated hybrid functional
,”
Chem. - Eur. J.
24
,
5173
5182
(
2018
).
75.
P.
Verma
,
A.
Perera
, and
R. J.
Bartlett
, “
Increasing the applicability of DFT I: Non-variational correlation corrections from Hartree-Fock DFT for predicting transition states
,”
Chem. Phys. Lett.
524
,
10
15
(
2012
).
76.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
, “
Understanding and reducing errors in density functional calculations
,”
Phys. Rev. Lett.
111
,
073003
(
2013
).
77.
S.
Vuckovic
,
S.
Song
,
J.
Kozlowski
,
E.
Sim
, and
K.
Burke
, “
Density functional analysis: The theory of density-corrected DFT
,”
J. Chem. Theory Comput.
15
,
6636
6646
(
2019
).
78.
B. G.
Janesko
, “
Replacing hybrid density functional theory: Motivation and recent advances
,”
Chem. Soc. Rev.
50
,
8470
(
2021
).
79.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Effect of the Perdew-Zunger self-interaction correction on the thermochemical performance of approximate density functionals
,”
J. Chem. Phys.
121
,
8187
8193
(
2004
).
80.
J.
Gräfenstein
and
D.
Cremer
, “
The self-interaction error and the description of non-dynamic electron correlation in density functional theory
,”
Theor. Chem. Acc.
123
,
171
182
(
2009
).
81.
M.
Reiher
,
O.
Salomon
, and
B.
Artur Hess
, “
Reparameterization of hybrid functionals based on energy differences of states of different multiplicity
,”
Theor. Chem. Acc.
107
,
48
55
(
2001
).
82.
M.
Reiher
, “
Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals
,”
Inorg. Chem.
41
,
6928
6935
(
2002
),

Supplementary Material

You do not currently have access to this content.