The nonadiabatic phenomena, which are characterized by a strong coupling between electronic and nuclear motions, are ubiquitous. The nonadiabatic effect of the studied system can be significantly affected by the surrounding environment, such as solvents, in which such nonadiabatic process takes place. It is essential to develop the theoretical models to simulate these processes while accurately modeling the solvent environment. The time-dependent density functional theory (TDDFT) is currently the most efficient approach to describe the electronic structures and dynamics of complex systems, while the polarizable continuum model (PCM) represents one of the most successful examples among continuum solvation models. Here, we formulate the first-order derivative couplings (DCs) between the ground and excited states as well as between two excited states by utilizing time-independent equation of motion formalism within the framework of both linear response and spin flip formulations of TDDFT/CPCM (the conductor-like PCM), and implement the analytical DCs into the Q-CHEM electronic structure software package. The analytic implementation is validated by the comparison of the analytical and finite-difference results, and reproducing geometric phase effect in the protonated formaldimine test case. Taking 4-(N,N-dimethylamino)benzonitrile and uracil in the gas phase and solution as an example, we demonstrate that the solvent effect is essential not only for the excitation energies of the low-lying excited-states but also for the DCs between these states. Finally, we calculate the internal conversion rate of benzophenone in a solvent with DC being used. The current implementation of analytical DCs together with the existing analytical gradient and Hessian of TDDFT/PCM excited states allows one to study the nonadiabatic effects of relatively large systems in solutions with low computational cost.

1.
J. C.
Tully
, “
Perspective: Nonadiabatic dynamics theory
,”
J. Chem. Phys.
137
,
22A301
(
2012
).
2.
D. R.
Yarkony
, “
Conical intersections: Diabolical and often misunderstood
,”
Acc. Chem. Res.
31
,
511
518
(
1998
).
3.
M. P.
Bircher
,
E.
Liberatore
,
N. J.
Browning
,
S.
Brickel
,
C.
Hofmann
,
A.
Patoz
,
O. T.
Unke
,
T.
Zimmermann
,
M.
Chergui
,
P.
Hamm
,
U.
Keller
,
M.
Meuwly
,
H.-J.
Woerner
,
J.
Vaníček
, and
U.
Rothlisberger
, “
Nonadiabatic effects in electronic and nuclear dynamics
,”
Struct. Dyn.
4
,
061510
(
2017
).
4.
F.
Agostini
,
B. F. E.
Curchod
,
R.
Vuilleumier
,
I.
Tavernelli
, and
E. K. U.
Gross
, “
TDDFT and quantum-classical dynamics: A universal tool describing the dynamics of matter
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
Cham
,
2018
), pp.
1
47
.
5.
Z.
Wang
,
C.
Wu
, and
W.
Liu
, “
NAC-TDDFT: Time-dependent density functional theory for nonadiabatic couplings
,”
Acc. Chem. Res.
54
,
3288
3297
(
2021
).
6.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials
,”
Chem. Rev.
120
,
2215
2287
(
2020
).
7.
S.
Matsika
, “
Electronic structure methods for the description of nonadiabatic effects and conical intersections
,”
Chem. Rev.
121
,
9407
9449
(
2021
).
8.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
9.
J. C.
Tully
, “
Mixed quantum-classical dynamics
,”
Faraday Discuss.
110
,
407
419
(
1998
).
10.
T. J.
Martinez
,
M.
Ben-Nun
, and
R. D.
Levine
, “
Multi-electronic-state molecular dynamics: A wave function approach with applications
,”
J. Phys. Chem.
100
,
7884
7895
(
1996
).
11.
T. J.
Martínez
and
R. D.
Levine
, “
Non-adiabatic molecular dynamics: Split-operator multiple spawning with applications to photodissociation
,”
J. Chem. Soc., Faraday Trans.
93
,
941
947
(
1997
).
12.
M.
Ben-Nun
and
T. J.
Martínez
, “
Ab initio quantum molecular dynamics
,” in
Advances in Chemical Physics
(
John Wiley & Sons
,
2002
), pp.
439
512
.
13.
W.
Liang
,
Z.
Pei
,
Y.
Mao
, and
Y.
Shao
, “
Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges
,”
J. Chem. Phys.
156
,
210901
(
2022
).
14.
X.
Zhang
and
J. M.
Herbert
, “
Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory
,”
J. Chem. Phys.
141
,
064104
(
2014
).
15.
B. H.
Lengsfield
,
P.
Saxe
, and
D. R.
Yarkony
, “
On the evaluation of nonadiabatic coupling matrix elements using SA-MCSCF/CI wave functions and analytic gradient methods. I
,”
J. Chem. Phys.
81
,
4549
4553
(
1984
).
16.
P.
Saxe
,
B. H.
Lengsfield
, and
D. R.
Yarkony
, “
On the evaluation of non-adiabatic coupling matrix elements for large scale CI wavefunctions
,”
Chem. Phys. Lett.
113
,
159
164
(
1985
).
17.
H.
Lischka
,
M.
Dallos
,
P. G.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
, “
Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism
,”
J. Chem. Phys.
120
,
7322
7329
(
2004
).
18.
J. W.
Park
and
T.
Shiozaki
, “
Analytical derivative coupling for multistate CASPT2 theory
,”
J. Chem. Theory Comput.
13
,
2561
2570
(
2017
).
19.
J. W.
Park
,
R.
Al-Saadon
,
N. E.
Strand
, and
T.
Shiozaki
, “
Imaginary shift in CASPT2 nuclear gradient and derivative coupling theory
,”
J. Chem. Theory Comput.
15
,
4088
4098
(
2019
).
20.
S.
Faraji
,
S.
Matsika
, and
A. I.
Krylov
, “
Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference methods
,”
J. Chem. Phys.
148
,
044103
(
2018
).
21.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
22.
V.
Chernyak
and
S.
Mukamel
, “
Density-matrix representation of nonadiabatic couplings in time-dependent density functional (TDDFT) theories
,”
J. Chem. Phys.
112
,
3572
3579
(
2000
).
23.
M.
Tommasini
,
V.
Chernyak
, and
S.
Mukamel
, “
Electronic density-matrix algorithm for nonadiabatic couplings in molecular dynamics simulations
,”
Int. J. Quantum Chem.
85
,
225
238
(
2001
).
24.
R.
Baer
, “
Non-adiabatic couplings by time-dependent density functional theory
,”
Chem. Phys. Lett.
364
,
75
79
(
2002
).
25.
R.
Send
and
F.
Furche
, “
First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance
,”
J. Chem. Phys.
132
,
044107
(
2010
).
26.
I.
Tavernelli
,
B. F. E.
Curchod
, and
U.
Rothlisberger
, “
On nonadiabatic coupling vectors in time-dependent density functional theory
,”
J. Chem. Phys.
131
,
196101
(
2009
).
27.
I.
Tavernelli
,
B. F. E.
Curchod
,
A.
Laktionov
, and
U.
Rothlisberger
, “
Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm–Dancoff approximation and beyond
,”
J. Chem. Phys.
133
,
194104
(
2010
).
28.
S.
Fatehi
,
E.
Alguire
,
Y.
Shao
, and
J. E.
Subotnik
, “
Analytic derivative couplings between configuration-interaction-singles states with built-in electron-translation factors for translational invariance
,”
J. Chem. Phys.
135
,
234105
(
2011
).
29.
E. C.
Alguire
,
Q.
Ou
, and
J. E.
Subotnik
, “
Calculating derivative couplings between time-dependent Hartree-Fock excited states with pseudo-wavefunctions
,”
J. Phys. Chem. B
119
,
7140
7149
(
2015
).
30.
Q.
Ou
,
S.
Fatehi
,
E.
Alguire
,
Y.
Shao
, and
J. E.
Subotnik
, “
Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation
,”
J. Chem. Phys.
141
,
024114
(
2014
).
31.
Q.
Ou
,
E. C.
Alguire
, and
J. E.
Subotnik
, “
Derivative couplings between time-dependent density functional theory excited states in the random-phase approximation based on pseudo-wavefunctions: Behavior around conical intersections
,”
J. Phys. Chem. B
119
,
7150
7161
(
2015
).
32.
Q.
Ou
,
G. D.
Bellchambers
,
F.
Furche
, and
J. E.
Subotnik
, “
First-order derivative couplings between excited states from adiabatic TDDFT response theory
,”
J. Chem. Phys.
142
,
064114
(
2015
).
33.
X.
Zhang
and
J. M.
Herbert
, “
Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach
,”
J. Chem. Phys.
142
,
064109
(
2015
).
34.
Z.
Li
and
W.
Liu
, “
First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels
,”
J. Chem. Phys.
141
,
014110
(
2014
).
35.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
, “
Conical intersections and double excitations in time-dependent density functional theory
,”
Mol. Phys.
104
,
1039
1051
(
2006
).
36.
A. I.
Krylov
, “
Size-consistent wave functions for bond-breaking: The equation-of-motion spin-flip model
,”
Chem. Phys. Lett.
338
,
375
384
(
2001
).
37.
Y. A.
Bernard
,
Y.
Shao
, and
A. I.
Krylov
, “
General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks
,”
J. Chem. Phys.
136
,
204103
(
2012
).
38.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
, “
The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals
,”
J. Chem. Phys.
118
,
4807
4818
(
2003
).
39.
F.
Wang
and
T.
Ziegler
, “
Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential
,”
J. Chem. Phys.
121
,
12191
12196
(
2004
).
40.
Y.
Harabuchi
,
K.
Keipert
,
F.
Zahariev
,
T.
Taketsugu
, and
M. S.
Gordon
, “
Dynamics simulations with spin-flip time-dependent density functional theory: Photoisomerization and photocyclization mechanisms of cis-stilbene in ππ* states
,”
J. Phys. Chem. A
118
(
51
),
11987
11998
(
2014
).
41.
X.
Zhang
and
J. M.
Herbert
, “
Excited-state deactivation pathways in uracil versus hydrated uracil: Solvatochromatic shift in the 1nπ* state is the key
,”
J. Phys. Chem. B
118
,
7806
7817
(
2014
).
42.
X.
Zhang
and
J. M.
Herbert
, “
Nonadiabatic dynamics with spin-flip vs linear-response time-dependent density functional theory: A case study for the protonated Schiff base C5H6NH2+
,”
J. Chem. Phys.
155
,
124111
(
2021
).
43.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
249
(
1976
).
44.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
, “
A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations
,”
J. Comput. Chem.
11
,
700
733
(
1990
).
45.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
46.
B.
Mennucci
, “
Polarizable continuum model
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
386
404
(
2012
).
47.
C.
Cappelli
, “
Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute-solvent systems
,”
Int. J. Quantum Chem.
116
,
1532
1542
(
2016
).
48.
J. M.
Herbert
, “
Dielectric continuum methods for quantum chemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1519
(
2021
).
49.
V.
Barone
and
M.
Cossi
, “
Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model
,”
J. Phys. Chem. A
102
,
1995
2001
(
1998
).
50.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
, “
Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model
,”
J. Comput. Chem.
24
,
669
681
(
2003
).
51.
A.
Klamt
and
G.
Schüürmann
, “
COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc., Perkin Trans. 2
1993
(5),
799
805
.
52.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
, “
A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
,”
J. Chem. Phys.
107
,
3032
3041
(
1997
).
53.
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
, “
Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications
,”
J. Phys. Chem. B
101
,
10506
10517
(
1997
).
54.
G.
Scalmani
,
M. J.
Frisch
,
B.
Mennucci
,
J.
Tomasi
,
R.
Cammi
, and
V.
Barone
, “
Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model
,”
J. Chem. Phys.
124
,
094107
(
2006
).
55.
Y.
Wang
and
H.
Li
, “
Excited state geometry of photoactive yellow protein chromophore: A combined conductor like polarizable continuum model and time-dependent density functional study
,”
J. Chem. Phys.
133
,
034108
(
2010
).
56.
C. A.
Guido
,
G.
Scalmani
,
B.
Mennucci
, and
D.
Jacquemin
, “
Excited state gradients for a state-specific continuum solvation approach: The vertical excitation model within a Lagrangian TDDFT formulation
,”
J. Chem. Phys.
146
,
204106
(
2017
).
57.
A. W.
Lange
and
J. M.
Herbert
, “
A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach
,”
J. Chem. Phys.
133
,
244111
(
2010
).
58.
J.
Liu
and
W.
Liang
, “
Analytical second derivatives of excited-state energy within the time-dependent density functional theory coupled with a conductor-like polarizable continuum model
,”
J. Chem. Phys.
138
,
024101
(
2013
).
59.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
,
R. A.
DiStasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
60.
D. M.
York
and
M.
Karplus
, “
A smooth solvation potential based on the conductor-like screening model
,”
J. Phys. Chem. A
103
,
11060
11079
(
1999
).
61.
V. I.
Lebedev
, “
Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion
,”
USSR Comput. Math. Math. Phys.
15
,
44
51
(
1975
).
62.
R.
Cammi
and
B.
Mennucci
, “
Linear response theory for the polarizable continuum model
,”
J. Chem. Phys.
110
,
9877
9886
(
1999
).
63.
M. E.
Casida
, “
Time-dependent density-functional theory for molecules and molecular solids
,”
J. Mol. Struct.: THEOCHEM
914
,
3
18
(
2009
).
64.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
65.
Z.
Li
and
W.
Liu
, “
Theoretical and numerical assessments of spin-flip time-dependent density functional theory
,”
J. Chem. Phys.
136
,
024107
(
2012
).
66.
M.
Cossi
and
V.
Barone
, “
Time-dependent density functional theory for molecules in liquid solutions
,”
J. Chem. Phys.
115
,
4708
4717
(
2001
).
67.
R.
Improta
,
V.
Barone
,
G.
Scalmani
, and
M. J.
Frisch
, “
A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution
,”
J. Chem. Phys.
125
,
054103
(
2006
).
68.
D. J.
Rowe
, “
Equations-of-motion method and the extended shell model
,”
Rev. Mod. Phys.
40
,
153
166
(
1968
).
69.
D. R.
Maurice
, “
Single electron theories of excited states
,” Ph.D. thesis,
University of California
,
Berkeley
,
1998
.thesis
70.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
, “
Derivative studies in Hartree-Fock and Møller-Plesset theories
,”
Int. J. Quantum Chem.
16
,
225
241
(
1979
).
71.
N. C.
Handy
and
H. F.
Schaefer
, “
On the evaluation of analytic energy derivatives for correlated wave functions
,”
J. Chem. Phys.
81
,
5031
5033
(
1984
).
72.
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
, “
Fast evaluation of geometries and properties of excited molecules in solution: A Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile
,”
J. Phys. Chem. A
104
,
5631
5637
(
2000
).
73.
B. G.
Levine
,
J. D.
Coe
, and
T. J.
Martínez
, “
Optimizing conical intersections without derivative coupling vectors: Application to multistate multireference second-order perturbation theory (MS-CASPT2)
,”
J. Phys. Chem. B
112
,
405
413
(
2008
).
74.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
75.
K.
Rotkiewicz
,
K. H.
Grellmann
, and
Z. R.
Grabowski
, “
Reinterpretation of the anomalous fluorescense of p-n,n-dimethylamino-benzonitrile
,”
Chem. Phys. Lett.
19
,
315
318
(
1973
).
76.
W.
Rettig
, “
Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis
,”
Angew. Chem., Int. Ed. Engl.
25
,
971
988
(
1986
).
77.
M.
Park
,
C. H.
Kim
, and
T.
Joo
, “
Multifaceted ultrafast intramolecular charge transfer dynamics of 4-(dimethylamino)benzonitrile (DMABN)
,”
J. Phys. Chem. A
117
,
370
377
(
2013
).
78.
B.
Mennucci
,
A.
Toniolo
, and
J.
Tomasi
, “
Ab initio study of the electronic excited states in 4-(N,N-dimethylamino)benzonitrile with inclusion of solvent effects: The internal charge transfer process
,”
J. Am. Chem. Soc.
122
,
10621
10630
(
2000
).
79.
D.
Rappoport
and
F.
Furche
, “
Photoinduced intramolecular charge transfer in 4-(dimethyl)aminobenzonitrile—A theoretical perspective
,”
J. Am. Chem. Soc.
126
,
1277
1284
(
2004
).
80.
G. R.
Medders
,
E. C.
Alguire
,
A.
Jain
, and
J. E.
Subotnik
, “
Ultrafast electronic relaxation through a conical intersection: Nonadiabatic dynamics disentangled through an oscillator strength-based diabatization framework
,”
J. Phys. Chem. A
121
,
1425
1434
(
2017
).
81.
M. A.
Kochman
and
B.
Durbeej
, “
Simulating the nonadiabatic relaxation dynamics of 4-(N,N-dimethylamino)benzonitrile (DMABN) in polar solution
,”
J. Phys. Chem. A
124
,
2193
2206
(
2020
).
82.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
83.
F.
Santoro
,
J. A.
Green
,
L.
Martinez-Fernandez
,
J.
Cerezo
, and
R.
Improta
, “
Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: Achievements and perspectives
,”
Phys. Chem. Chem. Phys.
23
,
8181
8199
(
2021
).
84.
T.
Gustavsson
,
Á.
Bányász
,
E.
Lazzarotto
,
D.
Markovitsi
,
G.
Scalmani
,
M. J.
Frisch
,
V.
Barone
, and
R.
Improta
, “
Singlet excited-state behavior of uracil and thymine in aqueous solution: A combined experimental and computational study of 11 uracil derivatives
,”
J. Am. Chem. Soc.
128
,
607
619
(
2006
).
85.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
86.
R.
Improta
,
V.
Barone
,
A.
Lami
, and
F.
Santoro
, “
Quantum dynamics of the ultrafast ππ*/nπ* population transfer in uracil and 5-fluoro-uracil in water and acetonitrile
,”
J. Phys. Chem. B
113
,
14491
14503
(
2009
).
87.
K.
Shizu
and
H.
Kaji
, “
Theoretical determination of rate constants from excited states: Application to benzophenone
,”
J. Phys. Chem. A
125
,
9000
9010
(
2021
).
88.
S.
Lin
,
Z.
Pei
,
B.
Zhang
,
H.
Ma
, and
W.
Liang
, “
Vibronic coupling effect on the vibrationally resolved electronic spectra and intersystem crossing rates of a TADF emitter: 7-PhQAD
,”
J. Phys. Chem. A
126
,
239
248
(
2022
).
89.
F.
Duschinsky
, “
On the interpretation of electronic spectra of polyatomic molecules. I. The Franck-Condon principle
,”
Acta Phys. Chim. URSS
7
,
551
(
1937
).
90.
W.
Liang
,
H.
Ma
,
H.
Zang
, and
C.
Ye
, “
Generalized time-dependent approaches to vibrationally resolved electronic and Raman spectra: Theory and applications
,”
Int. J. Quantum Chem.
115
,
550
563
(
2015
).
91.
G.
Spighi
,
M.-A.
Gaveau
,
J.-M.
Mestdagh
,
L.
Poisson
, and
B.
Soep
, “
Gas phase dynamics of triplet formation in benzophenone
,”
Phys. Chem. Chem. Phys.
16
,
9610
9618
(
2014
).
92.
B. K.
Shah
,
M. A. J.
Rodgers
, and
D. C.
Neckers
, “
The S2 → S1 internal conversion of benzophenone and p-iodobenzophenone
,”
J. Phys. Chem. A
108
,
6087
6089
(
2004
).
93.
D.-C.
Sergentu
,
R.
Maurice
,
R. W. A.
Havenith
,
R.
Broer
, and
D.
Roca-Sanjuán
, “
Computational determination of the dominant triplet population mechanism in photoexcited benzophenone
,”
Phys. Chem. Chem. Phys.
16
,
25393
25403
(
2014
).
94.
H.
Feshbach
,
Quantum Mechanism
(
American Association for the Advancement of Science
,
New York
,
1962
), pp.
439
512
.
95.
J.
Jortner
and
M.
Bixon
, “
Radiationless transitions in polyatomic molecules
,”
Israel J. Chem.
7
,
189
220
(
1969
).
96.
V. G.
Plotnikov
, “
Regularities of the processes of radiationless conversion in polyatomic molecules
,”
Int. J. Quantum Chem.
16
,
527
541
(
1979
).

Supplementary Material

You do not currently have access to this content.