Herein, we present a new method to efficiently calculate electronically excited states in large molecular assemblies, consisting of hundreds of molecules. For this purpose, we combine the long-range corrected tight-binding density functional fragment molecular orbital method (FMO-LC-DFTB) with an excitonic Hamiltonian, which is constructed in the basis of locally excited and charge-transfer configuration state functions calculated for embedded monomers and dimers and accounts explicitly for the electronic coupling between all types of excitons. We first evaluate both the accuracy and efficiency of our fragmentation approach for molecular dimers and aggregates by comparing it with the full LC-TD-DFTB method. The comparison of the calculated spectra of an anthracene cluster shows a very good agreement between our method and the LC-TD-DFTB reference. The effective computational scaling of our method has been explored for anthracene clusters and for perylene bisimide aggregates. We demonstrate the applicability of our method by the calculation of the excited state properties of pentacene crystal models consisting of up to 319 molecules. Furthermore, the participation ratio of the monomer fragments to the excited states is analyzed by the calculation of natural transition orbital participation numbers, which are verified by the hole and particle density for a chosen pentacene cluster. The use of our FMO-LC-TDDFTB method will allow for future studies of excitonic dynamics and charge transport to be performed on complex molecular systems consisting of thousands of atoms.

1.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
(
World Scientific
,
1995
), pp.
155
192
.
2.
M. E.
Casida
and
M.
Huix-Rotllant
, “
Progress in time-dependent density-functional theory
,”
Annu. Rev. Phys. Chem.
63
,
287
323
(
2012
).
3.
A. D.
Laurent
and
D.
Jacquemin
, “
TD-DFT benchmarks: A review
,”
Int. J. Quantum Chem.
113
,
2019
2039
(
2013
).
4.
F.
Wu
,
W.
Liu
,
Y.
Zhang
, and
Z.
Li
, “
Linear-scaling time-dependent density functional theory based on the idea of “From Fragments to Molecule”
,”
J. Chem. Theory Comput.
7
,
3643
3660
(
2011
).
5.
C. R.
Jacob
and
J.
Neugebauer
, “
Subsystem density-functional theory: Subsystem density-functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
325
362
(
2014
).
6.
S.
Dapprich
,
I.
Komáromi
,
K. S.
Byun
,
K.
Morokuma
, and
M. J.
Frisch
, “
A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives
,”
J. Mol. Struct.: THEOCHEM
461-462
,
1
21
(
1999
).
7.
T.
Vreven
,
K. S.
Byun
,
I.
Komáromi
,
S.
Dapprich
,
J. A.
Montgomery
,
K.
Morokuma
, and
M. J.
Frisch
, “
Combining quantum mechanics methods with molecular mechanics methods in ONIOM
,”
J. Chem. Theory Comput.
2
,
815
826
(
2006
).
8.
W.
Thiel
, “
Semiempirical quantum–chemical methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
145
157
(
2014
).
9.
A. S.
Christensen
,
T.
Kubař
,
Q.
Cui
, and
M.
Elstner
, “
Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications
,”
Chem. Rev.
116
,
5301
5337
(
2016
).
10.
M. J. S.
Dewar
and
W.
Thiel
, “
Ground states of molecules. 38. The MNDO method. Approximations and parameters
,”
J. Am. Chem. Soc.
99
,
4899
4907
(
1977
).
11.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
, “
Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model
,”
J. Am. Chem. Soc.
107
,
3902
3909
(
1985
).
12.
J. J. P.
Stewart
, “
Optimization of parameters for semiempirical methods I. Method
,”
J. Comput. Chem.
10
,
209
220
(
1989
).
13.
M.
Kolb
and
W.
Thiel
, “
Beyond the MNDO model: Methodical considerations and numerical results
,”
J. Comput. Chem.
14
,
775
789
(
1993
).
14.
W.
Thiel
and
A. A.
Voityuk
, “
Extension of MNDO to d Orbitals: Parameters and results for the second-row elements and for the zinc group
,”
J. Phys. Chem.
100
,
616
626
(
1996
).
15.
W.
Weber
and
W.
Thiel
, “
Orthogonalization corrections for semiempirical methods
,”
Theor. Chem. Acc.
103
,
495
506
(
2000
).
16.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
, “
Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon
,”
Phys. Rev. B
51
,
12947
12957
(
1995
).
17.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
, “
Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme
,”
Int. J. Quantum Chem.
58
,
185
192
(
1996
).
18.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
,
7260
7268
(
1998
).
19.
T. A.
Niehaus
,
S.
Suhai
,
F.
Della Sala
,
P.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
, “
Tight-binding approach to time-dependent density-functional response theory
,”
Phys. Rev. B
63
,
085108
(
2001
).
20.
T. A.
Niehaus
,
D.
Heringer
,
B.
Torralva
, and
T.
Frauenheim
, “
Importance of electronic self-consistency in the TDDFT based treatment of nonadiabatic molecular dynamics
,”
Eur. Phys. J. D
35
,
467
477
(
2005
).
21.
A.
Humeniuk
and
R.
Mitrić
, “
Long-range correction for tight-binding TD-DFT
,”
J. Chem. Phys.
143
,
134120
(
2015
).
22.
V.
Lutsker
,
B.
Aradi
, and
T. A.
Niehaus
, “
Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method
,”
J. Chem. Phys.
143
,
184107
(
2015
).
23.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafé
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrică
,
A.
Dominguez
,
S.
Ehlert
,
M.
Elstner
,
T.
van der Heide
,
J.
Hermann
,
S.
Irle
,
J. J.
Kranz
,
C.
Köhler
,
T.
Kowalczyk
,
T.
Kubař
,
I. S.
Lee
,
V.
Lutsker
,
R. J.
Maurer
,
S. K.
Min
,
I.
Mitchell
,
C.
Negre
,
T. A.
Niehaus
,
A. M. N.
Niklasson
,
A. J.
Page
,
A.
Pecchia
,
G.
Penazzi
,
M. P.
Persson
,
J.
Řezáč
,
C. G.
Sánchez
,
M.
Sternberg
,
M.
Stöhr
,
F.
Stuckenberg
,
A.
Tkatchenko
,
V. W.-z.
Yu
, and
T.
Frauenheim
, “
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
,
124101
(
2020
).
24.
A.
Humeniuk
and
R.
Mitrić
, “
DFTBaby: A software package for non-adiabatic molecular dynamics simulations based on long-range corrected tight-binding TD-DFT(B)
,”
Comput. Phys. Commun.
221
,
174
202
(
2017
).
25.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
, “
Chemistry with ADF
,”
J. Comput. Chem.
22
,
931
967
(
2001
).
26.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
27.
P.
Koskinen
and
V.
Mäkinen
, “
Density-functional tight-binding for beginners
,”
Comput. Mater. Sci.
47
,
237
253
(
2009
).
28.
S.
Grimme
, “
A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules
,”
J. Chem. Phys.
138
,
244104
(
2013
).
29.
S.
Grimme
and
C.
Bannwarth
, “
Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)
,”
J. Chem. Phys.
145
,
054103
(
2016
).
30.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
, “
A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86)
,”
J. Chem. Theory Comput.
13
,
1989
2009
(
2017
).
31.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
,
1652
1671
(
2019
).
32.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
, “
Extended tight-binding quantum chemistry methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
33.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
, “
Fragment molecular orbital method: An approximate computational method for large molecules
,”
Chem. Phys. Lett.
313
,
701
706
(
1999
).
34.
T.
Nakano
,
T.
Kaminuma
,
T.
Sato
,
Y.
Akiyama
,
M.
Uebayasi
, and
K.
Kitaura
, “
Fragment molecular orbital method: Application to polypeptides
,”
Chem. Phys. Lett.
318
,
614
618
(
2000
).
35.
T.
Nakano
,
T.
Kaminuma
,
T.
Sato
,
K.
Fukuzawa
,
Y.
Akiyama
,
M.
Uebayasi
, and
K.
Kitaura
, “
Fragment molecular orbital method: Use of approximate electrostatic potential
,”
Chem. Phys. Lett.
351
,
475
480
(
2002
).
36.
D. G.
Fedorov
,
T.
Ishida
, and
K.
Kitaura
, “
Multilayer formulation of the fragment molecular orbital method (FMO)
,”
J. Phys. Chem. A
109
,
2638
2646
(
2005
).
37.
Y.
Mochizuki
,
S.
Koikegami
,
S.
Amari
,
K.
Segawa
,
K.
Kitaura
, and
T.
Nakano
, “
Configuration interaction singles method with multilayer fragment molecular orbital scheme
,”
Chem. Phys. Lett.
406
,
283
288
(
2005
).
38.
S.
Tsuneyuki
,
T.
Kobori
,
K.
Akagi
,
K.
Sodeyama
,
K.
Terakura
, and
H.
Fukuyama
, “
Molecular orbital calculation of biomolecules with fragment molecular orbitals
,”
Chem. Phys. Lett.
476
,
104
108
(
2009
).
39.
K.
Brorsen
and
D. G.
Fedorov
, “
Fully analytic energy gradient in the fragment molecular orbital method
,”
J. Chem. Phys.
134
,
124115
(
2011
).
40.
I.
Fujino
,
D. G.
Fedorov
,
K.
Kitaura
,
H.
Hirose
, and
N.
Nakayama
, “
Fragment molecular orbital simulations of organic charge transport materials: A feasibility study
,”
J. Imaging Soc. Jpn.
54
,
7
(
2015
).
41.
S.
Tanaka
,
Y.
Mochizuki
,
Y.
Komeiji
,
Y.
Okiyama
, and
K.
Fukuzawa
, “
Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems
,”
Phys. Chem. Chem. Phys.
16
,
10310
10344
(
2014
).
42.
T.
Yoshikawa
,
M.
Kobayashi
,
A.
Fujii
, and
H.
Nakai
, “
Novel approach to excited-state calculations of large molecules based on divide-and-conquer method: Application to photoactive yellow protein
,”
J. Phys. Chem. B
117
,
5565
5573
(
2013
).
43.
H.
Nishizawa
,
Y.
Nishimura
,
M.
Kobayashi
,
S.
Irle
, and
H.
Nakai
, “
Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation
,”
J. Comput. Chem.
37
,
1983
1992
(
2016
).
44.
H.
Nakai
and
T.
Yoshikawa
, “
Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level
,”
J. Chem. Phys.
146
,
124123
(
2017
).
45.
T.
Yoshikawa
,
N.
Komoto
,
Y.
Nishimura
, and
H.
Nakai
, “
GPU-accelerated large-scale excited-state simulation based on divide-and-conquer time-dependent density-functional tight-binding
,”
J. Comput. Chem.
40
,
2778
2786
(
2019
).
46.
Y.
Nishimura
and
H.
Nakai
, “
Quantum chemical calculations for up to one hundred million atoms using Dcdftbmd code on supercomputer Fugaku
,”
Chem. Lett.
50
,
1546
1550
(
2021
).
47.
T.
Sawada
,
D. G.
Fedorov
, and
K.
Kitaura
, “
Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations
,”
J. Am. Chem. Soc.
132
,
16862
16872
(
2010
).
48.
H.
Nakata
,
D. G.
Fedorov
,
S.
Yokojima
,
K.
Kitaura
, and
S.
Nakamura
, “
Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals
,”
Theor. Chem. Acc.
133
,
1477
(
2014
).
49.
H.
Uratani
and
H.
Nakai
, “
Simulating the coupled structural–electronic dynamics of photoexcited lead iodide perovskites
,”
J. Phys. Chem. Lett.
11
,
4448
4455
(
2020
).
50.
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
, “
Density-functional tight-binding combined with the fragment molecular orbital method
,”
J. Chem. Theory Comput.
10
,
4801
4812
(
2014
).
51.
Y.
Nishimoto
and
S.
Irle
, “
The FMO-DFTB method
,” in
Recent Advances of the Fragment Molecular Orbital Method: Enhanced Performance and Applicability
, edited by
Y.
Mochizuki
,
S.
Tanaka
and
K.
Fukuzawa
(
Springer Singapore
,
Singapore
,
2021
), pp.
459
485
.
52.
Y.
Nishimoto
,
H.
Nakata
,
D. G.
Fedorov
, and
S.
Irle
, “
Large-scale quantum-mechanical molecular dynamics simulations using density-functional tight-binding combined with the fragment molecular orbital method
,”
J. Phys. Chem. Lett.
6
,
5034
5039
(
2015
).
53.
Y.
Nishimoto
and
D. G.
Fedorov
, “
The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model
,”
Phys. Chem. Chem. Phys.
18
,
22047
22061
(
2016
).
54.
Y.
Nishimoto
and
D. G.
Fedorov
, “
The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions
,”
J. Chem. Phys.
154
,
111102
(
2021
).
55.
V. Q.
Vuong
,
Y.
Nishimoto
,
D. G.
Fedorov
,
B. G.
Sumpter
,
T. A.
Niehaus
, and
S.
Irle
, “
The fragment molecular orbital method based on long-range corrected density-functional tight-binding
,”
J. Chem. Theory Comput.
15
,
3008
3020
(
2019
).
56.
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
, “
Third-order density-functional tight-binding combined with the fragment molecular orbital method
,”
Chem. Phys. Lett.
636
,
90
96
(
2015
).
57.
Y.
Nishimoto
and
D. G.
Fedorov
, “
Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding
,”
J. Comput. Chem.
38
,
406
418
(
2017
).
58.
Y.
Nishimoto
and
D. G.
Fedorov
, “
Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding
,”
J. Chem. Phys.
148
,
064115
(
2018
).
59.
D. G.
Fedorov
, “
Partition analysis for density-functional tight-binding
,”
J. Phys. Chem. A
124
,
10346
10358
(
2020
).
60.
H.
Kitoh-Nishioka
,
K.
Welke
,
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
, “
Multiscale simulations on charge transport in covalent organic frameworks including dynamics of transfer integrals from the FMO-DFTB/LCMO approach
,”
J. Phys. Chem. C
121
,
17712
17726
(
2017
).
61.
H.
Kitoh-Nishioka
,
R.
Sato
,
Y.
Shigeta
, and
K.
Ando
, “
Linear combination of molecular orbitals of fragments (FMO-LCMO) method: Its application to charge transfer studies
,” in
Recent Advances of the Fragment Molecular Orbital Method: Enhanced Performance and Applicability
, edited by
Y.
Mochizuki
,
S.
Tanaka
and
K.
Fukuzawa
(
Springer Singapore
,
Singapore
,
2021
), pp.
391
405
.
62.
N.
Komoto
,
T.
Yoshikawa
,
J.
Ono
,
Y.
Nishimura
, and
H.
Nakai
, “
Development of large-scale excited-state calculations based on the divide-and-conquer time-dependent density functional tight-binding method
,”
J. Chem. Theory Comput.
15
,
1719
1727
(
2019
).
63.
N.
Komoto
,
T.
Yoshikawa
,
Y.
Nishimura
, and
H.
Nakai
, “
Large-scale molecular dynamics simulation for ground and excited states based on divide-and-conquer long-range corrected density-functional tight-binding method
,”
J. Chem. Theory Comput.
16
,
2369
2378
(
2020
).
64.
H.
Uratani
,
T.
Morioka
,
T.
Yoshikawa
, and
H.
Nakai
, “
Fast nonadiabatic molecular dynamics via spin-flip time-dependent density-functional tight-binding approach: Application to nonradiative relaxation of tetraphenylethylene with locked aromatic rings
,”
J. Chem. Theory Comput.
16
,
7299
7313
(
2020
).
65.
H.
Uratani
and
H.
Nakai
, “
Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations
,”
J. Chem. Phys.
152
,
224109
(
2020
).
66.
H.
Uratani
,
T.
Yoshikawa
, and
H.
Nakai
, “
Trajectory surface hopping approach to condensed-phase nonradiative relaxation dynamics using divide-and-conquer spin-flip time-dependent density-functional tight binding
,”
J. Chem. Theory Comput.
17
,
1290
1300
(
2021
).
67.
J. A.
Green
,
H.
Asha
,
F.
Santoro
, and
R.
Improta
, “
Excitonic model for strongly coupled multichromophoric systems: The electronic circular dichroism spectra of guanine quadruplexes as test cases
,”
J. Chem. Theory Comput.
17
,
405
415
(
2021
).
68.
X.
Li
,
R. M.
Parrish
,
F.
Liu
,
S. I. L.
Kokkila Schumacher
, and
T. J.
Martínez
, “
An ab initio exciton model including charge-transfer excited states
,”
J. Chem. Theory Comput.
13
,
3493
3504
(
2017
).
69.
J.
Wen
and
H.
Ma
, “
A fragmentation-based approach for evaluating the intra-chain excitonic couplings in conjugated polymers
,”
Chem. Phys. Lett.
679
,
152
157
(
2017
).
70.
K. J.
Fujimoto
, “
Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states
,”
J. Chem. Phys.
137
,
034101
(
2012
).
71.
K. J.
Fujimoto
and
C.
Kitamura
, “
A theoretical study of crystallochromy: Spectral tuning of solid-state tetracenes
,”
J. Chem. Phys.
139
,
084511
(
2013
).
72.
T.
Fujita
and
Y.
Mochizuki
, “
Development of the fragment molecular orbital method for calculating nonlocal excitations in large molecular systems
,”
J. Phys. Chem. A
122
,
3886
3898
(
2018
).
73.
74.
J. M.
Perkel
, “
Why scientists are turning to Rust
,”
Nature
588
,
185
186
(
2020
).
75.
M.
Elstner
and
G.
Seifert
, “
Density functional tight binding
,”
Philos. Trans. R. Soc., A
372
,
20120483
(
2014
).
76.
F.
Spiegelman
,
N.
Tarrat
,
J.
Cuny
,
L.
Dontot
,
E.
Posenitskiy
,
C.
Martí
,
A.
Simon
, and
M.
Rapacioli
, “
Density-functional tight-binding: Basic concepts and applications to molecules and clusters
,”
Adv. Phys.: X
5
,
1710252
(
2020
).
77.
V. Q.
Vuong
,
J.
Akkarapattiakal Kuriappan
,
M.
Kubillus
,
J. J.
Kranz
,
T.
Mast
,
T. A.
Niehaus
,
S.
Irle
, and
M.
Elstner
, “
Parametrization and benchmark of long-range corrected DFTB2 for organic molecules
,”
J. Chem. Theory Comput.
14
,
115
125
(
2018
).
78.
P. O.
Löwdin
, “
On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals
,”
J. Chem. Phys.
18
,
365
375
(
1950
).
79.
E. R.
Davidson
, “
The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,”
J. Comput. Phys.
17
,
87
94
(
1975
).
80.
D. G.
Anderson
, “
Iterative procedures for nonlinear integral equations
,”
J. Altern. Complementary Med.
12
,
547
560
(
1965
).
81.
J.
Zhang
,
B.
O’Donoghue
, and
S.
Boyd
, “
Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations
,”
SIAM J. Optim.
30
,
3170
3197
(
2020
).
82.
T.
Stein
,
L.
Kronik
, and
R.
Baer
, “
Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory
,”
J. Am. Chem. Soc.
131
,
2818
2820
(
2009
).
83.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
, “
Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
8
,
1515
1531
(
2012
).
84.
C. F.
Macrae
,
I.
Sovago
,
S. J.
Cottrell
,
P. T. A.
Galek
,
P.
McCabe
,
E.
Pidcock
,
M.
Platings
,
G. P.
Shields
,
J. S.
Stevens
,
M.
Towler
, and
P. A.
Wood
, “
It Mercury 4.0: From visualization to analysis, design and prediction
,”
J. Appl. Crystallogr.
53
,
226
235
(
2020
).
85.
R.
Mason
, “
The crystallography of anthracene at 95 K and 290 K
,”
Acta Crystallogr.
17
,
547
555
(
1964
).
86.
D.
Holmes
,
S.
Kumaraswamy
,
A. J.
Matzger
, and
K. P. C.
Vollhardt
, “
On the nature of nonplanarity in the [N]phenylenes
,”
Chem. - Eur. J.
5
,
3399
3412
(
1999
).
87.
M.-J.
Lin
,
B.
Fimmel
,
K.
Radacki
, and
F.
Würthner
, “
Halochromic phenolate perylene bisimides with unprecedented NIR spectroscopic properties
,”
Angew. Chem., Int. Ed.
50
,
10847
10850
(
2011
).
88.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
89.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
90.
S.
Ehlert
, “
simple-dftd3, version 0.4.1
,”
2021
, https://github.com/dftd3/simple-dftd3.
91.
B. M.
Bold
,
M.
Sokolov
,
S.
Maity
,
M.
Wanko
,
P. M.
Dohmen
,
J. J.
Kranz
,
U.
Kleinekathöfer
,
S.
Höfener
, and
M.
Elstner
, “
Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes
,”
Phys. Chem. Chem. Phys.
22
,
10500
10518
(
2020
).
92.
A.
Fihey
and
D.
Jacquemin
, “
Performances of density functional tight-binding methods for describing ground and excited state geometries of organic molecules
,”
J. Chem. Theory Comput.
15
,
6267
6276
(
2019
).
93.
P. M.
Zimmerman
,
F.
Bell
,
D.
Casanova
, and
M.
Head-Gordon
, “
Mechanism for singlet fission in pentacene and tetracene: From single exciton to two triplets
,”
J. Am. Chem. Soc.
133
,
19944
19952
(
2011
).
94.
J.
Zirzlmeier
,
D.
Lehnherr
,
P. B.
Coto
,
E. T.
Chernick
,
R.
Casillas
,
B. S.
Basel
,
M.
Thoss
,
R. R.
Tykwinski
, and
D. M.
Guldi
, “
Singlet fission in pentacene dimers
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
5325
5330
(
2015
).
95.
D.
Beljonne
,
H.
Yamagata
,
J. L.
Brédas
,
F. C.
Spano
, and
Y.
Olivier
, “
Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene
,”
Phys. Rev. Lett.
110
,
226402
(
2013
).
96.
V.
Coropceanu
,
M.
Malagoli
,
D. A.
da Silva Filho
,
N. E.
Gruhn
,
T. G.
Bill
, and
J. L.
Brédas
, “
Hole- and electron-vibrational couplings in oligoacene crystals: Intramolecular contributions
,”
Phys. Rev. Lett.
89
,
275503
(
2002
).
97.
L.
Crocker
,
T.
Wang
, and
P.
Kebarle
, “
Electron affinities of some polycyclic aromatic hydrocarbons, obtained from electron-transfer equilibria
,”
J. Am. Chem. Soc.
115
,
7818
7822
(
1993
).
98.
S. T.
Hammer
, Influence of crystal structure on excited states in crystalline organic semiconductors,
Universität Würzburg
,
2021
.
99.
J.
Hoche
,
M.
Flock
,
X.
Miao
,
L. N.
Philipp
,
M.
Wenzel
,
I.
Fischer
, and
R.
Mitric
, “
Excimer formation dynamics in the isolated tetracene dimer
,”
Chem. Sci.
12
,
11965
11975
(
2021
).
100.
M. I. S.
Röhr
,
H.
Marciniak
,
J.
Hoche
,
M. H.
Schreck
,
H.
Ceymann
,
R.
Mitric
, and
C.
Lambert
, “
Exciton dynamics from strong to weak coupling limit illustrated on a series of squaraine dimers
,”
J. Phys. Chem. C
122
,
8082
8093
(
2018
).
101.
I.
Benkyi
,
E.
Tapavicza
,
H.
Fliegl
, and
D.
Sundholm
, “
Calculation of vibrationally resolved absorption spectra of acenes and pyrene
,”
Phys. Chem. Chem. Phys.
21
,
21094
21103
(
2019
).
102.
L.
Craciunescu
,
S.
Wirsing
,
S.
Hammer
,
K.
Broch
,
A.
Dreuw
,
F.
Fantuzzi
,
V.
Sivanesan
,
P.
Tegeder
, and
B.
Engels
, “
Accurate polarization-resolved absorption spectra of organic semiconductor thin films using first-principles quantum-chemical methods: Pentacene as a case study
,”
J. Phys. Chem. Lett.
13
,
3726
3731
(
2022
).
103.
Y.
Qian
,
X.
Li
,
A. R.
Harutyunyan
,
G.
Chen
,
Y.
Rao
, and
H.
Chen
, “
Herzberg–Teller effect on the vibrationally resolved absorption spectra of single-crystalline pentacene at finite temperatures
,”
J. Phys. Chem. A
124
,
9156
9165
(
2020
).
104.
A. V.
Luzanov
,
A. A.
Sukhorukov
, and
V. E.
Umanskii
, “
Application of transition density matrix for analysis of excited states
,”
Theor. Exp. Chem.
10
,
354
361
(
1976
).
105.
A. V.
Luzanov
and
V. F.
Pedash
, “
Interpretation of excited states using charge-transfer numbers
,”
Theor. Exp. Chem.
15
,
338
341
(
1980
).
106.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
, “
New tools for the systematic analysis and visualization of electronic excitations. I. Formalism
,”
J. Chem. Phys.
141
,
024106
(
2014
).
107.
V.
Bonačić-Koutecký
and
R.
Mitrić
, “
Theoretical exploration of ultrafast dynamics in atomic clusters: Analysis and control
,”
Chem. Rev.
105
,
11
66
(
2005
).
You do not currently have access to this content.