The generalized energy-based fragmentation (GEBF) approach under periodic boundary conditions (PBCs) has been developed to facilitate calculations of molecular crystals containing large molecules. The PBC-GEBF approach can help predict structures and properties of molecular crystals at different theory levels by performing molecular quantum chemistry calculations on a series of non-periodic subsystems constructed from the studied systems. A more rigorous formula of the forces on translational vectors of molecular crystals was proposed and implemented, enabling more reliable predictions of crystal structures. Our benchmark results on several typical molecular crystals show that the PBC-GEBF approach could reproduce the forces on atoms and the translational vectors and the optimized crystal structures from the corresponding conventional periodic methods. The improved PBC-GEBF approach is then applied to predict the crystal structures and vibrational spectra of two molecular crystals containing large molecules. The PBC-GEBF approach can provide a satisfactory description on the crystal structure of a molecular crystal containing 312 atoms in a unit cell at density-fitting second-order Møller–Plesset perturbation theory and density functional theory (DFT) levels and the infrared vibrational spectra of another molecular crystal containing 864 atoms in a unit cell at the DFT level. The PBC-GEBF approach is expected to be a promising theoretical tool for electronic structure calculations on molecular crystals containing large molecules.

1.
J.
Furthmüller
,
J.
Hafner
, and
G.
Kresse
,
Phys. Rev. B
50
,
15606
(
1994
).
2.
O. H.
Nielsen
and
R. M.
Martin
,
Phys. Rev. Lett.
50
,
697
(
1983
).
4.
K. N.
Kudin
and
G. E.
Scuseria
,
Phys. Rev. B
61
,
16440
(
2000
).
5.
K. N.
Kudin
,
G. E.
Scuseria
, and
H. B.
Schlegel
,
J. Chem. Phys.
114
,
2919
(
2001
).
6.
J.
McClain
,
Q.
Sun
,
G. K.-L.
Chan
, and
T. C.
Berkelbach
,
J. Chem. Theory Comput.
13
,
1209
(
2017
).
7.
S.
Hirata
,
I.
Grabowski
,
M.
Tobita
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
345
,
475
(
2001
).
8.
S.
Hirata
and
S.
Iwata
,
J. Chem. Phys.
109
,
4147
(
1998
).
9.
S.
Suhai
and
J.
Ladik
,
J. Phys. C: Solid State Phys.
15
,
4327
(
1982
).
10.
J. Q.
Sun
and
R. J.
Bartlett
,
J. Chem. Phys.
104
,
8553
(
1996
).
11.
C.
Cervinka
,
M.
Fulem
, and
K.
Ruzicka
,
J. Chem. Phys.
144
,
064505
(
2016
).
12.
O.
Danyliv
and
L.
Kantorovich
,
Phys. Rev. B
70
,
075113
(
2004
).
13.
O.
Danyliv
,
L.
Kantorovich
, and
F.
Corá
,
Phys. Rev. B
76
,
045107
(
2007
).
14.
L.
Maschio
,
D.
Usvyat
,
M.
Schütz
, and
B.
Civalleri
,
J. Chem. Phys.
132
,
134706
(
2010
).
15.
C.
Pisani
 et al,
J. Comput. Chem.
29
,
2113
(
2008
).
16.
D.
Usvyat
,
L.
Maschio
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1357
(
2018
).
17.
Y.
Wang
,
Z.
Ni
,
W.
Li
, and
S.
Li
,
J. Chem. Theory Comput.
15
,
2933
(
2019
).
18.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
8
,
4177
(
2012
).
19.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
9
,
2654
(
2013
).
20.
L.
Maschio
 et al,
Phys. Rev. B
76
,
075101
(
2007
).
21.
D.
Usvyat
 et al,
Phys. Rev. B
76
,
075102
(
2007
).
22.
M. A.
Collins
and
R. P. A.
Bettens
,
Chem. Rev.
115
,
5607
(
2015
).
23.
M. A.
Collins
,
M. W.
Cvitkovic
, and
R. P. A.
Bettens
,
Acc. Chem. Res.
47
,
2776
(
2014
).
24.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
25.
X.
He
,
T.
Zhu
,
X.
Wang
,
J.
Liu
, and
J. Z. H.
Zhang
,
Acc. Chem. Res.
47
,
2748
(
2014
).
26.
S.
Li
,
W.
Li
, and
J.
Ma
,
Acc. Chem. Res.
47
,
2712
(
2014
).
27.
W.
Li
,
H.
Dong
,
J.
Ma
, and
S.
Li
,
Acc. Chem. Res.
54
,
169
(
2021
).
28.
K.
Raghavachari
and
A.
Saha
,
Chem. Rev.
115
,
5643
(
2015
).
29.
B.
Wang
 et al,
Acc. Chem. Res.
47
,
2731
(
2014
).
30.
M. A.
Collins
,
J. Phys. Chem. A
120
,
9281
(
2016
).
31.
H. M.
Netzloff
and
M. A.
Collins
,
J. Chem. Phys.
127
,
134113
(
2007
).
32.
X.
He
 et al,
J. Chem. Phys.
137
,
204505
(
2012
).
33.
S.
Hirata
 et al,
Acc. Chem. Res.
47
,
2721
(
2014
).
34.
S.
Hirata
 et al,
Annu. Rev. Phys. Chem.
63
,
131
(
2012
).
35.
O.
Sode
 et al,
Int. J. Quantum Chem.
109
,
1928
(
2009
).
37.
G. J. O.
Beran
and
K.
Nanda
,
J. Phys. Chem. Lett.
1
,
3480
(
2010
).
38.
C.
Cervinka
and
G. J. O.
Beran
,
Chem. Sci.
9
,
4622
(
2018
).
39.
C.
Cervinka
and
G. J. O.
Beran
,
Phys. Chem. Chem. Phys.
19
,
29940
(
2017
).
40.
C.
Cervinka
and
G. J. O.
Beran
,
Phys. Chem. Chem. Phys.
21
,
14799
(
2019
).
41.
Y. N.
Heit
and
G. J. O.
Beran
,
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
72
,
514
(
2016
).
42.
Y. N.
Heit
,
K. D.
Nanda
, and
G. J. O.
Beran
,
Chem. Sci.
7
,
246
(
2016
).
43.
W.
Sontising
 et al,
Chem. Sci.
8
,
7374
(
2017
).
44.
T.
Fujita
,
T.
Nakano
, and
S.
Tanaka
,
Chem. Phys. Lett.
506
,
112
(
2011
).
45.
S.
Tanaka
 et al,
Phys. Chem. Chem. Phys.
16
,
10310
(
2014
).
46.
J.
Liu
and
X.
He
,
Phys. Chem. Chem. Phys.
22
,
12341
(
2020
).
47.
J.
Liu
 et al,
J. Chem. Theory Comput.
11
,
5897
(
2015
).
48.
Q.
Lu
 et al,
J. Phys. Chem. C
123
,
12052
(
2019
).
49.
T.
Nakamura
,
T.
Yokaichiya
, and
D. G.
Fedorov
,
J. Phys. Chem. Lett.
12
,
8757
(
2021
).
50.
Y.
Nishimoto
and
D. G.
Fedorov
,
J. Chem. Phys.
154
,
111102
(
2021
).
51.
S.
Li
,
W.
Li
, and
T.
Fang
,
J. Am. Chem. Soc.
127
,
7215
(
2005
).
52.
W.
Li
,
S.
Li
, and
Y.
Jiang
,
J. Phys. Chem. A
111
,
2193
(
2007
).
53.
T.
Fang
,
J.
Jia
, and
S.
Li
,
J. Phys. Chem. A
120
,
2700
(
2016
).
54.
T.
Fang
 et al,
J. Chem. Theory Comput.
11
,
91
(
2015
).
55.
T.
Fang
,
Y. Z.
Li
, and
S. H.
Li
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1297
(
2017
).
56.
Y.
Li
 et al,
J. Comput. Chem.
43
,
704
(
2022
).
57.
D.
Zhao
 et al,
J. Chem. Theory Comput.
16
,
2995
(
2020
).
58.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
).
59.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
78
,
4066
(
1983
).
60.
S.
Li
,
W.
Li
,
Y.
Jiang
,
J.
Ma
,
T.
Fang
,
W.
Hua
,
S.
Hua
,
H.
Dong
,
D.
Zhao
,
K.
Liao
,
W.
Zou
,
Z.
Ni
,
Y.
Wang
,
X.
Shen
, and
B.
Hong
, LSQC Program, Version 2.5. See https://itcc.nju.edu.cn/lsqc/,
2022
.
61.
W.
Li
 et al,
Int. J. Quantum Chem.
115
,
641
(
2015
).
62.
G. W. T. M. J.
Frisch
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
63.
P. J. K. H.-J.
Werner
,
G.
Knizia
,
F. R.
Manby
,
M.
Schutz
,
P.
Celani
,
W.
Gyorffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Koppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pfluger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, Version 2015.1, a Package of Ab Initio Programs,
2015
.
64.
H.-J.
Werner
 et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
65.
A.
Hjorth Larsen
 et al,
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
66.
R.
Dovesi
 et al,
Int. J. Quantum Chem.
114
,
1287
(
2014
).
67.
V. R. S. R.
Dovesi
,
C.
Roetti
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
F.
Pascale
,
B.
Civalleri
,
K.
Doll
,
N. M.
Harrison
,
I. J.
Bush
,
P.
D’Arco
,
M.
Llunell
,
M.
Causà
, and
Y.
Noël
, CRYSTAL14 User’s Manual,
2014
.
68.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2007
).
69.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
71.
M. M.
Francl
 et al,
J. Chem. Phys.
77
,
3654
(
1982
).
72.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
73.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
74.
K. L.
Schuchardt
 et al,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
75.
A. O.
Surov
 et al,
Cryst. Growth Des.
19
,
5751
(
2019
).
76.
R.
Krishnan
 et al,
J. Chem. Phys.
72
,
650
(
1980
).
77.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
78.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
79.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
80.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
81.
E.
Kayahara
 et al,
Nat. Commun.
4
,
2694
(
2013
).
82.
S.
Grimme
 et al,
J. Chem. Phys.
132
,
154104
(
2010
).
83.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
84.
P. J.
Stephens
 et al,
J. Phys. Chem.
98
,
11623
(
2002
).
85.
J.
Hoja
,
A. M.
Reilly
, and
A.
Tkatchenko
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1294
(
2017
).
86.
A.
Otero-de-la-Roza
and
E. R.
Johnson
,
J. Chem. Phys.
137
,
054103
(
2012
).
87.
J. C.
Lauer
 et al,
Chem. Eur. J.
24
,
1816
(
2018
).
88.
D. O.
Kashinski
 et al,
J. Phys. Chem. A
121
,
2265
(
2017
).
89.
Y.
Heit
, and
G. J. O.
Beran
,
J. Comput. Chem.
35
,
2205
(
2014
).

Supplementary Material

You do not currently have access to this content.