Kernel-based methods, including Gaussian process regression (GPR) and generally kernel ridge regression, have been finding increasing use in computational chemistry, including the fitting of potential energy surfaces and density functionals in high-dimensional feature spaces. Kernels of the Matern family, such as Gaussian-like kernels (basis functions), are often used which allow imparting to them the meaning of covariance functions and formulating GPR as an estimator of the mean of a Gaussian distribution. The notion of locality of the kernel is critical for this interpretation. It is also critical to the formulation of multi-zeta type basis functions widely used in computational chemistry. We show, on the example of fitting of molecular potential energy surfaces of increasing dimensionality, the practical disappearance of the property of locality of a Gaussian-like kernel in high dimensionality. We also formulate a multi-zeta approach to the kernel and show that it significantly improves the quality of regression in low dimensionality but loses any advantage in high dimensionality, which is attributed to the loss of the property of locality.

1.
C. M.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer
,
Singapore
,
2006
).
2.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge, MA
,
2006
).
3.
P. G.
Mezey
,
Potential Energy Hypersurfaces
(
Elsevier
,
Amsterdam
,
1987
).
4.
A.
Kamath
,
R. A.
Vargas-Hernández
,
R. V.
Krems
,
T.
Carrington
, and
S.
Manzhos
,
J. Chem. Phys.
148
,
241702
(
2018
).
5.
S.
Manzhos
,
E.
Sasaki
, and
M.
Ihara
,
Mach. Learn.: Sci. Technol.
3
,
01LT02
(
2022
).
6.
D.
Hu
,
Y.
Xie
,
X.
Li
,
L.
Li
, and
Z.
Lan
,
J. Phys. Chem. Lett.
9
,
2725
(
2018
).
7.
J.
Westermayr
,
F. A.
Faber
,
A. S.
Christensen
,
O. A.
von Lilienfeld
, and
P.
Marquetand
,
Mach. Learn.: Sci. Technol.
1
,
025009
(
2020
).
8.
P. O.
Dral
, in
Advances in Quantum Chemistry
, edited by
K.
Ruud
and
E. J.
Brändas
(
Academic Press
,
2020
), pp.
291
324
.
9.
Y.
Guan
,
S.
Yang
, and
D. H.
Zhang
,
Mol. Phys.
116
,
823
(
2018
).
10.
S.
Manzhos
and
M.
Ihara
,
J. Math. Chem.
61
,
7
20
(
2023
).
11.
C.
Qu
,
Q.
Yu
,
B. L.
Van Hoozen
, Jr.
,
J. M.
Bowman
, and
R. A.
Vargas-Hernández
,
J. Chem. Theory Comput.
14
,
3381
(
2018
).
12.
A.
Christianen
,
T.
Karman
,
R. A.
Vargas-Hernández
,
G. C.
Groenenboom
, and
R. V.
Krems
,
J. Chem. Phys.
150
,
064106
(
2019
).
13.
H.
Sugisawa
,
T.
Ida
, and
R. V.
Krems
,
J. Chem. Phys.
153
,
114101
(
2020
).
14.
J.
Cui
and
R. V.
Krems
,
J. Phys. B: At. Mol. Opt. Phys.
49
,
224001
(
2016
).
15.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
16.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
17.
S.
Manzhos
and
P.
Golub
,
J. Chem. Phys.
153
,
074104
(
2020
).
18.
K.
Vu
,
J. C.
Snyder
,
L.
Li
,
M.
Rupp
,
B. F.
Chen
,
T.
Khelif
,
K.-R.
Müller
, and
K.
Burke
,
Int. J. Quantum Chem.
115
,
1115
(
2015
).
19.
B.
Kalita
,
L.
Li
,
R. J.
McCarty
, and
K.
Burke
,
Acc. Chem. Res.
54
,
818
(
2021
).
20.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
,
Phys. Rev. Lett.
108
,
253002
(
2012
).
21.
L.
Li
,
T. E.
Baker
,
S. R.
White
, and
K.
Burke
,
Phys. Rev. B
94
,
245129
(
2016
).
22.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
,
Nat. Commun.
8
,
872
(
2017
).
23.
S.
Manzhos
and
M.
Ihara
, arXiv:2112.02467 (
2021
).
24.
M. G.
Genton
,
J. Mach. Learn. Res.
2
,
299
(
2001
).
25.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
,
Chem. Rev.
121
,
10073
(
2021
).
26.
D.
Skouteris
and
V.
Barone
,
J. Chem. Phys.
140
,
244104
(
2014
).
27.
S.
Garashchuk
and
J. C.
Light
,
J. Chem. Phys.
114
,
3929
(
2001
).
28.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
29.
T. H.
Dunning
and
P. J.
Hay
, in
Methods of Electronic Structure Theory
, edited by
H. F.
Schaefer
(
Springer
,
Boston, MA
,
1977
), pp.
1
27
.
30.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
31.
S.
Manzhos
,
X.
Wang
, and
T.
Carrington
,
Chem. Phys.
509
,
139
(
2018
).
32.
A.
Kamath
and
S.
Manzhos
,
Mathematics
6
,
253
(
2018
).
33.
S.
Manzhos
and
T.
Carrington
,
J. Chem. Phys.
145
,
224110
(
2016
).
34.
D. L.
Donoho
, in
AMS Conference on Math Challenges of the 21st Century
(
AMS
,
2000
).
35.
J. M.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
36.
M.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
37.
S.
Manzhos
,
K.
Yamashita
, and
T.
Carrington
,
Chem. Phys. Lett.
511
,
434
(
2011
).
38.
W.
Yang
and
A. C.
Peet
,
Chem. Phys. Lett.
153
,
98
(
1988
).
39.
T.
Carrington
,
Spectrochim. Acta, Part A
248
,
119158
(
2021
).
40.
R.
Penrose
,
Math. Proc. Cambridge Philos. Soc.
51
,
406
(
1955
).
41.
S.
Manzhos
,
X.
Wang
,
R.
Dawes
, and
T.
Carrington
,
J. Phys. Chem. A
110
,
5295
(
2006
).
42.
S.
Manzhos
,
T.
Carrington
,
L.
Laverdure
, and
N.
Mosey
,
J. Phys. Chem. A
119
,
9557
(
2015
).
43.
P.
Jensen
,
J. Mol. Spectrosc.
133
,
438
(
1989
).
44.
S.
Carter
,
N.
Handy
, and
J.
Demaison
,
Mol. Phys.
90
,
729
(
1997
).
45.
M. A.
Boussaidi
,
O.
Ren
,
D.
Voytsekhovsky
, and
S.
Manzhos
,
J. Phys. Chem. A
124
,
7598
(
2020
).
46.
O.
Ren
,
M. A.
Boussaidi
,
D.
Voytsekhovsky
,
M.
Ihara
, and
S.
Manzhos
,
Comput. Phys. Commun.
271
,
108220
(
2021
).
47.
M.
Chan
,
S.
Manzhos
,
T.
Carrington
, and
K.
Yamashita
,
J. Chem. Theory Comput.
8
,
2053
(
2012
).
48.
S.
Manzhos
,
T.
Carrington
, and
K.
Yamashita
,
J. Phys. Chem. Lett.
2
,
2193
(
2011
).
49.
H.
Kulik
,
T.
Hammerschmidt
,
J.
Schmidt
,
S.
Botti
,
M. A. L.
Marques
,
M.
Boley
,
M.
Scheffler
,
M.
Todorović
,
P.
Rinke
,
C.
Oses
,
A.
Smolyanyuk
,
S.
Curtarolo
,
A.
Tkatchenko
,
A.
Bartok
,
S.
Manzhos
,
M.
Ihara
,
T.
Carrington
,
J.
Behler
,
O.
Isayev
,
M.
Veit
,
A.
Grisafi
,
J.
Nigam
,
M.
Ceriotti
,
K. T.
Schütt
,
J.
Westermayr
,
M.
Gastegger
,
R.
Maurer
,
B.
Kalita
,
K.
Burke
,
R.
Nagai
,
R.
Akashi
,
O.
Sugino
,
J.
Hermann
,
F.
Noé
,
S.
Pilati
,
C.
Draxl
,
M.
Kuban
,
S.
Rigamonti
,
M.
Scheidgen
,
M.
Esters
,
D.
Hicks
,
C.
Toher
,
P.
Balachandran
,
I.
Tamblyn
,
S.
Whitelam
,
C.
Bellinger
, and
L. M.
Ghiringhelli
,
Electron. Struct.
4
,
023004
(
2022
).
50.
H.
Rabitz
and
Ö. F.
Aliş
,
J. Math. Chem.
25
,
197
(
1999
).
51.
G.
Li
,
C.
Rosenthal
, and
H.
Rabitz
,
J. Phys. Chem. A
105
,
7765
(
2001
).
52.
G.
Li
,
J.
Hu
,
S.-W.
Wang
,
P. G.
Georgopoulos
,
J.
Schoendorf
, and
H.
Rabitz
,
J. Phys. Chem. A
110
,
2474
(
2006
).

Supplementary Material

You do not currently have access to this content.