Recently, Kohn–Sham (KS) methods with new correlation functionals, called σ-functionals, have been introduced. Technically, σ-functionals are closely related to the well-known random phase approximation (RPA); formally, σ-functionals are rooted in perturbation theory along the adiabatic connection. If employed in a post-self-consistent field manner in a Gaussian basis set framework, then, σ-functional methods are computationally very efficient. Moreover, for main group chemistry, σ-functionals are highly accurate and can compete with high-level wave-function methods. For reaction and transition state energies, e.g., chemical accuracy of 1 kcal/mol is reached. Here, we show how to calculate first derivatives of the total energy with respect to nuclear coordinates for methods using σ-functionals and then carry out geometry optimizations for test sets of main group molecules, transition metal compounds, and non-covalently bonded systems. For main group molecules, we additionally calculate vibrational frequencies. σ-Functional methods are found to yield very accurate geometries and vibrational frequencies for main group molecules superior not only to those from conventional KS methods but also to those from RPA methods. For geometries of transition metal compounds, not surprisingly, best geometries are found for RPA methods, while σ-functional methods yield somewhat less good results. This is attributed to the fact that in the optimization of σ-functionals, transition metal compounds could not be represented well due to the lack of reliable reference data. For non-covalently bonded systems, σ-functionals yield geometries of the same quality as the RPA or as conventional KS schemes combined with dispersion corrections.

1.
E.
Trushin
,
A.
Thierbach
, and
A.
Görling
,
J. Chem. Phys.
154
,
014104
(
2021
).
2.
S.
Fauser
,
E.
Trushin
,
C.
Neiss
, and
A.
Görling
,
J. Chem. Phys.
155
,
134111
(
2021
).
3.
J.
Erhard
,
S.
Fauser
,
E.
Trushin
, and
A.
Görling
,
J. Chem. Phys.
157
,
114105
(
2022
).
4.
A.
Heßelmann
and
A.
Görling
,
Mol. Phys.
109
,
2473
(
2011
).
5.
H.
Eshuis
,
J. E.
Bates
, and
F.
Furche
,
Theor. Chem. Acc.
131
,
1084
(
2012
).
6.
X.
Ren
,
P.
Rinke
,
C.
Joas
, and
M.
Scheffler
,
J. Mater. Sci.
47
,
7447
(
2012
).
7.
G. P.
Chen
,
V. K.
Voora
,
M. M.
Agee
,
S. G.
Balasubramani
, and
F.
Furche
,
Annu. Rev. Phys. Chem.
68
,
421
(
2017
).
8.
J.
Erhard
,
P.
Bleiziffer
, and
A.
Görling
,
Phys. Rev. Lett.
117
,
143002
(
2016
).
9.
A.
Görling
,
Phys. Rev. B
99
,
235120
(
2019
).
10.
Y.
Lemke
,
D.
Graf
,
J.
Kussmann
, and
C.
Ochsenfeld
,
Mol. Phys.
(published online 2022).
11.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
12.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer
,
Heidelberg
,
1990
).
13.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley VCH
,
New York
,
2000
).
14.
A.
Görling
,
J. Chem. Phys.
123
,
062203
(
2005
).
15.
J. P.
Perdew
and
K.
Schmidt
,
AIP Conf. Proc.
577
,
1
(
2001
).
16.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
17.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
18.
A.
Thierbach
and
A.
Görling
,
J. Chem. Phys.
153
,
134113
(
2020
).
19.
P.
Bleiziffer
,
A.
Heßelmann
, and
A.
Görling
,
J. Chem. Phys.
139
,
084113
(
2013
), note that in Eqs. (30), (31), and (48)–(51) of this reference there is a sign error in the denominators on the right hand sides. They should read 1 − σ() instead of 1 + σ().
20.
A. M.
Burow
,
J. E.
Bates
,
F.
Furche
, and
H.
Eshuis
,
J. Theor. Comput. Chem.
10
,
180
(
2014
).
21.
TURBOMOLE V7.6, a development of the University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, (1989–2007), TURBOMOLE GmbH (2007); available at http://www.turbomole.com.
22.
A.
Heßelmann
and
A.
Görling
,
Mol. Phys.
108
,
359
(
2010
).
23.
M.
Hellgren
and
U.
von Barth
,
J. Chem. Phys.
132
,
044101
(
2010
).
24.
A.
Heßelmann
and
A.
Görling
,
Phys. Rev. Lett.
106
,
093001
(
2011
).
25.
P.
Bleiziffer
,
A.
Heßelmann
, and
A.
Görling
,
J. Chem. Phys.
136
,
134102
(
2012
).
26.
N. E.
Dahlen
,
R. v.
Leeuwen
, and
U. v.
Barth
,
Phys. Rev. A
73
,
012511
(
2006
).
27.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
,
J. Chem. Phys.
131
,
154115
(
2009
).
28.
T. M.
Henderson
and
G. E.
Scuseria
,
Mol. Phys.
108
,
2511
(
2010
).
29.
J.
Paier
,
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
,
A.
Grüneis
,
G.
Kresse
, and
M.
Scheffler
,
New J. Phys.
14
,
043002
(
2012
).
30.
A.
Förster
,
J. Chem. Theory Comput.
18
,
5948
(
2022
).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
32.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
33.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
34.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
35.
D.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
36.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
37.
K.
Eichkorn
,
O.
Treutler
,
H.
Oehm
,
M.
Haeser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
38.
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
39.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
40.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
,
J. Chem. Phys.
132
,
234114
(
2010
).
41.
F.
Pawlowski
,
P.
Jørgensen
,
J.
Olsen
,
F.
Hegelund
,
T.
Helgaker
,
J.
Gauss
,
K.
Bak
, and
J.
Stanton
,
J. Chem. Phys.
116
,
6482
(
2002
).
42.
J. R.
Rumble
,
CRC Handbook of Chemistry and Physics
, 103rd ed. (
CRC
,
2022–2023
).
43.
D. P.
Tew
,
W.
Klopper
,
M.
Heckert
, and
J.
Gauss
,
J. Phys. Chem. A
111
,
11242
(
2007
).
44.
A.
Thierbach
,
D.
Schmidtel
, and
A.
Görling
,
J. Chem. Phys.
151
,
144117
(
2019
).
45.
T. A.
Ruden
,
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
121
,
5874
(
2004
).
46.
A.
Hoy
,
I.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
47.
H. C.
Allen
and
E. K.
Plyler
,
J. Chem. Phys.
25
,
1132
(
1956
).
48.
A.
Barbe
,
C.
Secroun
, and
P.
Jouve
,
J. Mol. Spectrosc.
49
,
171
(
1974
).
49.
M. M.
Rochkind
and
G. C.
Pimentel
,
J. Chem. Phys.
42
,
1361
(
1965
).
50.
D. L.
Michalopoulos
,
M. E.
Geusic
,
S. G.
Hansen
,
D. E.
Powers
, and
R. E.
Smalley
,
J. Phys. Chem.
86
,
3914
(
1982
).
51.
J. R.
Lombardi
and
B.
Davis
,
Chem. Rev.
102
,
2431
(
2002
).
52.
B. W.
McClelland
,
A. G.
Robiette
,
L.
Hedberg
, and
K.
Hedberg
,
Inorg. Chem.
40
,
1358
(
2001
).
53.
L.
Hedberg
,
T.
Iijima
, and
K.
Hedberg
,
J. Chem. Phys.
70
,
3224
(
1979
).
54.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
55.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
56.
J.
Řezáč
and
P.
Hobza
,
J. Theor. Comput. Chem.
9
,
2151
(
2013
).
You do not currently have access to this content.