The fully correlated frequency-independent Dirac–Coulomb–Breit Hamiltonian provides the most accurate description of electron–electron interaction before going to a genuine relativistic quantum electrodynamics theory of many-electron systems. In this work, we introduce a correlated Dirac–Coulomb–Breit multiconfigurational self-consistent-field method within the frameworks of complete active space and density matrix renormalization group. In this approach, the Dirac–Coulomb–Breit Hamiltonian is included variationally in both the mean-field and correlated electron treatment. We also analyze the importance of the Breit operator in electron correlation and the rotation between the positive- and negative-orbital space in the no-virtual-pair approximation. Atomic fine-structure splittings and lanthanide contraction in diatomic fluorides are used as benchmark studies to understand the contribution from the Breit correlation.

1.
J. B.
Mann
and
W. R.
Johnson
, “
Breit interaction in multielectron atoms
,”
Phys. Rev. A
4
,
41
51
(
1971
).
2.
K.-N.
Huang
,
M.
Aoyagi
,
M. H.
Chen
,
B.
Crasemann
, and
H.
Mark
, “
Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-slater calculations 2 ≤ Z ≤ 106
,”
At. Data Nucl. Data Tables
18
,
243
291
(
1976
).
3.
C.
Chantler
,
T.
Nguyen
,
J.
Lowe
, and
I.
Grant
, “
Convergence of the Breit interaction in self-consistent and configuration-interaction approaches
,”
Phys. Rev. A
90
,
062504
(
2014
).
4.
K.
Kozioł
,
C. A.
Giménez
, and
G. A.
Aucar
, “
Breit corrections to individual atomic and molecular orbital energies
,”
J. Chem. Phys.
148
,
044113
(
2018
).
5.
S.
Sun
,
J.
Ehrman
,
Q.
Sun
, and
X.
Li
, “
Efficient evaluation of the Breit operator in the Pauli spinor basis
,”
J. Chem. Phys.
157
,
064112
(
2022
).
6.
C.
Thierfelder
and
P.
Schwerdtfeger
, “
Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms
,”
Phys. Rev. A
82
,
062503
(
2010
).
7.
P.
Pyykkö
, “
The physics behind chemistry and the periodic table
,”
Chem. Rev.
112
,
371
384
(
2012
).
8.
P.
Pyykkö
, “
Relativistic effects in chemistry: More common than you thought
,”
Annu. Rev. Phys. Chem.
63
,
45
64
(
2012
).
9.
W.
Liu
and
I.
Lindgren
, “
Going beyond ‘No-pair relativistic quantum chemistry
,’”
J. Chem. Phys.
139
,
014108
(
2013
).
10.
W.
Liu
, “
Advances in relativistic molecular quantum mechanics
,”
Phys. Rep.
537
,
59
89
(
2014
).
11.
W.
Liu
, “
Essentials of relativistic quantum chemistry
,”
J. Chem. Phys.
152
,
180901
(
2020
).
12.
I. P.
Grant
and
W. G.
Penney
, “
Relativistic self-consistent fields
,”
Proc. R. Soc. London, Ser. A
262
,
555
576
(
1961
).
13.
E.
Lindroth
,
A.-M.
Martensson-Pendrill
,
A.
Ynnerman
, and
P.
Oster
, “
Self-consistent treatment of the Breit interaction, with application to the electric dipole moment in thallium
,”
J. Phys. B
22
,
2447
2464
(
1989
).
14.
L.
Visscher
,
T. J.
Lee
, and
K. G.
Dyall
, “
Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples
,”
J. Chem. Phys.
105
,
8769
(
1996
).
15.
J.
Thyssen
,
T.
Fleig
, and
H. J. A.
Jensen
, “
A direct relativistic four-component multiconfiguration self-consistent-field method for molecules
,”
J. Chem. Phys.
129
,
034109
(
2008
).
16.
J. E.
Bates
and
T.
Shiozaki
, “
Fully relativistic complete active space self-consistent field for large molecules: Quasi-second-order minimax optimization
,”
J. Chem. Phys.
142
,
044112
(
2015
).
17.
J. P.
Desclaux
, “
Multiconfiguration relativistic DIRAC-FOCK program
,”
Comput. Phys. Commun.
9
,
31
45
(
1975
).
18.
I. P.
Grant
and
B. J.
McKenzie
, “
The transverse electron-electron interaction in atomic structure calculations
,”
J. Phys. B: At. Mol. Phys.
13
,
2671
(
1980
).
19.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
, “
GRASP: A general-purpose relativistic atomic structure program
,”
Comput. Phys. Commun.
55
,
425
456
(
1989
).
20.
H. M.
Quiney
,
I. P.
Grant
, and
S.
Wilson
, “
The Dirac equation in the algebraic approximation. V. Self-consistent field studies including the Breit interaction
,”
J. Phys. B: At. Mol. Phys.
20
,
1413
1422
(
1987
).
21.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
, “
Relativistic calculation of electromagnetic interactions in molecules
,”
J. Phys. B: At. Mol. Phys.
30
,
L829
L834
(
1997
).
22.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
, “
Relativistic, quantum electrodynamic and many-body effects in the water molecule
,”
Chem. Phys. Lett.
290
,
473
480
(
1998
).
23.
Y.
Ishikawa
, “
Dirac–Fock Gaussian basis calculations: Inclusion of the Breit interaction in the self-consistent field procedure
,”
Chem. Phys. Lett.
166
,
321
325
(
1990
).
24.
Y.
Ishikawa
,
H. M.
Quiney
, and
G. L.
Malli
, “
Dirac-Fock-Breit self-consistent-field method: Gaussian basis-set calculations on many-electron atoms
,”
Phys. Rev. A
43
,
3270
3278
(
1991
).
25.
F. A.
Parpia
,
A. K.
Mohanty
, and
E.
Clementi
, “
Relativistic calculations for atoms: Self-consistent treatment of Breit interaction and nuclear volume effect
,”
J. Phys. B: At. Mol. Phys.
25
,
1
16
(
1992
).
26.
T.
Shiozaki
, “
Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals
,”
J. Chem. Phys.
138
,
111101
(
2013
).
27.
M. S.
Kelley
and
T.
Shiozaki
, “
Large-scale Dirac–Fock–Breit method using density fitting and 2-spinor basis functions
,”
J. Chem. Phys.
138
,
204113
(
2013
).
28.
R. D.
Reynolds
,
T.
Yanai
, and
T.
Shiozaki
, “
Large-scale relativistic complete active space self-consistent field with robust convergence
,”
J. Chem. Phys.
149
,
014106
(
2018
).
29.
S.
Sun
,
T. F.
Stetina
,
T.
Zhang
,
H.
Hu
,
E. F.
Valeev
,
Q.
Sun
, and
X.
Li
, “
Efficient four-component Dirac–Coulomb–Gaunt Hartree–Fock in the Pauli spinor representation
,”
J. Chem. Theory Comput.
17
,
3388
3402
(
2021
).
30.
J. M.
Kasper
,
A. J.
Jenkins
,
S.
Sun
, and
X.
Li
, “
Perspective on Kramers symmetry breaking and restoration in relativistic electronic structure methods for open-shell systems
,”
J. Chem. Phys.
153
,
090903
(
2020
).
31.
C. E.
Hoyer
,
H.
Hu
,
L.
Lu
,
S.
Knecht
, and
X.
Li
, “
Relativistic Kramers-unrestricted exact-two-component density matrix renormalization group
,”
J. Phys. Chem. A
126
,
5011
5020
(
2022
).
32.
R. E.
Stanton
and
S.
Havriliak
, “
Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations
,”
J. Chem. Phys.
81
,
1910
1918
(
1984
).
33.
Y.
Ishikawa
,
R. C.
Binning
, and
K. M.
Sando
, “
Dirac-Fock discrete-basis calculations on the beryllium atom
,”
Chem. Phys. Lett.
101
,
111
114
(
1983
).
34.
K. G.
Dyall
and
K.
Fægri
, “
Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set
,”
Chem. Phys. Lett.
174
,
25
32
(
1990
).
35.
Q.
Sun
,
W.
Liu
, and
W.
Kutzelnigg
, “
Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations
,”
Theor. Chem. Acc.
129
,
423
436
(
2011
).
36.
W.
Liu
, “
Ideas of relativistic quantum chemistry
,”
Mol. Phys.
108
,
1679
1706
(
2010
).
37.
S.
Sun
,
T. F.
Stetina
,
T.
Zhang
, and
X.
Li
, “
On the finite nuclear effect and gaussian basis set for four-component Dirac Hartree-Fock calculations
,” in
Rare Earth Elements and Actinides: Progress in Computational Science Applications
, edited by
D. A.
Penchoff
,
T. L.
Windus
, and
C. C.
Peterson
(
American Chemical Society
,
2021
), Vol. 1388, pp.
207
218
.
38.
J.
Sucher
, “
Foundations of the relativistic theory of many-electron atoms
,”
Phys. Rev. A
22
,
348
(
1980
).
39.
T.
Saue
and
L.
Visscher
, in
Theoretical Chemistry and Physics of Heavy and Superheavy Elements
, edited by
S.
Wilson
and
U.
Kaldor
(
Kluwer
,
Dordrecht
,
2003
), pp.
211
261
.
40.
A.
Almoukhalalati
,
S.
Knecht
,
H. J. A.
Jensen
,
K. G.
Dyall
, and
T.
Saue
, “
Electron correlation within the relativistic no-pair approximation
,”
J. Chem. Phys.
145
,
074104
(
2016
).
41.
P. J.
Knowles
and
N. C.
Handy
, “
A new determinant-based full configuration interaction method
,”
Chem. Phys. Lett.
111
,
315
321
(
1984
).
42.
S. R.
White
, “
Density-matrix algorithms for quantum renormalization groups
,”
Phys. Rev. B
48
,
10345
(
1993
).
43.
S.
Knecht
,
Ö.
Legeza
, and
M.
Reiher
, “
Communication: Four-component density matrix renormalization group
,”
J. Chem. Phys.
140
,
041101
(
2014
).
44.
S.
Battaglia
,
S.
Keller
, and
S.
Knecht
, “
Efficient relativistic density-matrix renormalization group implementation in a matrix-product formulation
,”
J. Chem. Theory Comput.
14
,
2353
2369
(
2018
).
45.
H.
Zhai
and
G. K.-L.
Chan
, “
A comparison between the one- and two-step spin–orbit coupling approaches based on the ab initio density matrix renormalization group
,”
J. Chem. Phys.
157
,
164108
(
2022
).
46.
D. B.
Williams-Young
,
A.
Petrone
,
S.
Sun
,
T. F.
Stetina
,
P.
Lestrange
,
C. E.
Hoyer
,
D. R.
Nascimento
,
L.
Koulias
,
A.
Wildman
,
J.
Kasper
 et al., “
The Chronus Quantum (ChronusQ) software package
,”
WIREs Comput. Mol. Sci.
10
,
e1436
(
2020
).
47.
S.
Keller
,
M.
Dolfi
,
M.
Troyer
, and
M.
Reiher
, “
An efficient matrix product operator representation of the quantum chemical Hamiltonian
,”
J. Chem. Phys.
143
,
244118
(
2015
).
48.
S.
Keller
and
M.
Reiher
, “
Spin-adapted matrix product states and operators
,”
J. Chem. Phys.
144
,
134101
(
2016
).
49.
S.
Knecht
,
E. D.
Hedegård
,
S.
Keller
,
A.
Kovyrshin
,
Y.
Ma
,
A.
Muolo
,
C. J.
Stein
, and
M.
Reiher
, “
New approaches for ab initio calculations of molecules with strong electron correlation
,”
Chimia
70
,
244
251
(
2016
).
50.
I. P.
McCulloch
, “
From density-matrix renormalization group to matrix product states
,”
J. Stat. Mech.
2007
,
P10014
.
51.
H. J.
Werner
and
W.
Meyer
, “
A quadratically convergent MCSCF method for the simultaneous optimization of several states a quadratically convergent MCSCF method for the simultaneous optimization of several states
,”
J. Chem. Phys.
74
,
5794
(
1981
).
52.
S.
Wouters
and
D.
Van Neck
, “
The density matrix renormalization group for ab initio quantum chemistry
,”
Eur. Phys. J. D
68
,
1
20
(
2014
).
53.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
, 1st ed. (
John Wiley & Sons
,
West Sussex, UK
,
2000
).
54.
H.
Hu
,
A. J.
Jenkins
,
H.
Liu
,
J. M.
Kasper
,
M. J.
Frisch
, and
X.
Li
, “
Relativistic two-component multireference configuration interaction method with tunable correlation space
,”
J. Chem. Theory Comput.
16
,
2975
2984
(
2020
).
55.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
NIST ASD Team
, NIST Atomic Spectra Database (version 5.6.1). https://physics.nist.gov/asd,
2018
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
56.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
, “
Main group atoms and dimers studied with a new relativistic ANO basis set
,”
J. Phys. Chem. A
108
,
2851
2858
(
2004
).
57.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
,
P.-O.
Widmark
, and
A. C.
Borin
, “
New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3
,”
J. Phys. Chem. A
112
,
11431
11435
(
2008
).
58.
L. A.
Kaledin
,
A. L.
Kaledin
, and
M. C.
Heaven
, “
Laser absorption spectroscopy of LaF: Analysis of the B1Π − X1Σ+ transition
,”
J. Mol. Spectrosc.
182
,
50
56
(
1997
).
59.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules
(
Van Nostrand
,
New York
,
1979
).
60.
P. S.
Bagus
,
Y. S.
Lee
, and
K. S.
Pitzer
, “
Effects of relativity and of the lanthanide contraction on the atoms from hafnium to bismuth
,”
Chem. Phys. Lett.
33
,
408
411
(
1975
).
61.
P.
Pyykkö
, “
Dirac-Fock one-centre calculations Part 8. The 1Σ states of ScH,YH, LaH, AcH, TmH, LuH and LrH
,”
Phys. Scr.
20
,
647
651
(
1979
).
62.
W.
Küchle
,
M.
Dolg
, and
H.
Stoll
, “
Ab initio study of the lanthanide and actinide contraction
,”
J. Phys. Chem. A
101
,
7128
7133
(
1997
).
63.
J. K.
Laerdahl
,
K.
Fægri
, Jr.
,
L.
Visscher
, and
T.
Saue
, “
A fully relativistic Dirac–Hartree–Fock and second-order Möller–Plesset study of the lanthanide and actinide contraction
,”
J. Chem. Phys.
109
,
10806
(
1998
).
64.
C.
Clavaguéra
,
J.-P.
Dognon
, and
P.
Pyykkö
, “
Calculated lanthanide contractions for molecular trihalides and fully Hydrated ions: The contributions from relativity and 4f-shell hybridization
,”
Chem. Phys. Lett.
429
,
8
12
(
2006
).
65.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
66.
Q.
Lu
and
K. A.
Peterson
, “
Correlation consistent basis sets for lanthanides: The atoms La-Lu
,”
J. Chem. Phys.
145
,
054111
(
2016
).

Supplementary Material

You do not currently have access to this content.