Silica-based aerogels are a promising low-cost solution for improving the insulation efficiency of single-pane windows and reducing the energy consumption required for space heating and cooling. Two key material properties required are high porosity and small pore sizes, which lead to low thermal conductivity and high optical transparency, respectively. However, porosity and pore size are generally directly linked, where high porosity materials also have large pore sizes. This is unfavorable as large pores scatter light, resulting in reduced transmittance in the visible regime. In this work, we utilized preformed silica colloids to explore methods for reducing pore size while maintaining high porosity. The use of preformed colloids allows us to isolate the effect of solution conditions on porous gel network formation by eliminating simultaneous nanoparticle growth and aggregation found when using typical sol–gel molecular-based silica precursors. Specifically, we used in situ synchrotron-based small-angle x-ray scattering during gel formation to better understand how pH, concentration, and colloid size affect particle aggregation and pore structure. Ex situ characterization of dried gels demonstrates that peak pore widths can be reduced from 15 to 13 nm, accompanied by a narrowing of the overall pore size distribution, while maintaining porosities of 70%–80%. Optical transparency is found to increase with decreasing pore sizes while low thermal conductivities ranging from 95 +/− 13 mW/m K are maintained. Mechanical performance was found to depend primarily on effective density and did not show a significant dependence on solution conditions. Overall, our results provide insights into methods to preserve high porosity in nanoparticle-based aerogels while improving optical transparency.

1.
U.S. Energy Information Administration. Table CE3.1 Annual Household Site End‐use Consumption in the U.S.—Totals and Averages, 2015; 2018.
2.
See https://www.energy.gov/energysaver/energy-efficient-window-coverings for Energy Efficient Window Coatings; accessed 27 July 2022.
3.
U.
Berardi
,
Energy Procedia
134
,
626
(
2017
).
4.
N.
Hüsing
and
U.
Schubert
,
Angew. Chem., Int. Ed.
37
,
22
(
1998
).
5.
T.
Shimizu
,
K.
Kanamori
,
A.
Maeno
,
H.
Kaji
,
C. M.
Doherty
,
P.
Falcaro
, and
K.
Nakanishi
,
Chem. Mater.
28
,
6860
(
2016
).
6.
R. K.
Iler
,
The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica
(
John Wiley and Sons
,
1979
).
7.
A.
Venkateswara Rao
,
S. D.
Bhagat
,
H.
Hirashima
, and
G. M.
Pajonk
,
J. Colloid Interface Sci.
300
,
279
(
2006
).
8.
A.
Venkateswara Rao
, and
R. R.
Kalesh
,
Sci. Technol. Adv. Mater.
4
,
509
(
2003
).
9.
R.
Al-Oweini
and
H.
El-Rassy
,
J. Mol. Struct.
919
,
140
(
2009
).
10.
A. C.
Pierre
and
G. M.
Pajonk
,
Chem. Rev.
102
,
4243
(
2002
).
11.
D. M.
Butts
,
P. E.
McNeil
,
M.
Marszewski
,
E.
Lan
,
T.
Galy
,
M.
Li
,
J. S.
Kang
,
D.
Ashby
,
S.
King
,
S. H.
Tolbert
,
Y.
Hu
,
L.
Pilon
, and
B. S.
Dunn
,
MRS Energy Sustainability
7
,
39
(
2020
).
12.
A.
Soleimani Dorcheh
and
M. H.
Abbasi
,
J. Mater. Process. Technol.
199
,
10
(
2008
).
13.
F.
Koç
,
S.
Sert Çok
, and
N.
Gizli
,
Res. Eng. Struct. Mater.
6
,
257
(
2020
).
14.
C. J.
Brinker
,
K. D.
Keefer
,
D. W.
Schaefer
, and
C. S.
Ashley
,
J. Non-Cryst. Solids
48
,
47
(
1982
).
15.
C. J.
Brinker
,
K. D.
Keefer
,
D. W.
Schaefer
,
R. A.
Assink
,
B. D.
Kay
, and
C. S.
Ashley
,
J. Non-Cryst. Solids
63
,
45
(
1984
).
16.
C.
Ziegler
,
A.
Wolf
,
W.
Liu
,
A.-K.
Herrmann
,
N.
Gaponik
, and
A.
Eychmüller
,
Angew. Chem., Int. Ed.
56
,
13200
(
2017
).
17.
F.
Matter
,
A. L.
Luna
, and
M.
Niederberger
,
Nano Today
30
,
100827
(
2020
).
18.
F.
Rechberger
and
M.
Niederberger
,
Nanoscale Horiz.
2
,
6
(
2017
).
19.
F.
Rechberger
,
F. J.
Heiligtag
,
M. J.
Süess
, and
M.
Niederberger
,
Angew. Chem., Int. Ed.
53
,
6823
(
2014
).
20.
F. J.
Heiligtag
,
N.
Kränzlin
,
M. J.
Süess
, and
M.
Niederberger
,
J. Sol-Gel Sci. Technol.
70
,
300
(
2014
).
21.
T.
Berestok
,
P.
Guardia
,
R.
Du
,
J. B.
Portals
,
M.
Colombo
,
S.
Estradé
,
F.
Peiró
,
S. L.
Brock
, and
A.
Cabot
,
ACS Appl. Mater. Interfaces
10
,
16041
(
2018
).
22.
N. C.
Bigall
,
A.-K.
Herrmann
,
M.
Vogel
,
M.
Rose
,
P.
Simon
,
W.
Carrillo-Cabrera
,
D.
Dorfs
,
S.
Kaskel
,
N.
Gaponik
, and
A.
Eychmüller
,
Angew. Chem., Int. Ed.
48
,
9731
(
2009
).
23.
J. L.
Mohanan
and
S. L.
Brock
,
J. Non-Cryst. Solids
350
,
1
(
2004
).
24.
J. L.
Mohanan
,
I. U.
Arachchige
, and
S. L.
Brock
,
Science
307
,
397
(
2005
).
25.
F.
Rechberger
and
M.
Niederberger
,
Mater. Horiz.
4
,
1115
(
2017
).
26.
M.
Marszewski
,
S. C.
King
,
Y.
Yan
,
T.
Galy
,
M.
Li
,
A.
Dashti
,
D. M.
Butts
,
J. S.
Kang
,
P. E.
McNeil
,
E.
Lan
,
B.
Dunn
,
Y.
Hu
,
S. H.
Tolbert
, and
L.
Pilon
,
ACS Appl. Nano Mater.
2
,
4547
(
2019
).
27.
M.
Marszewski
,
S. C.
King
,
T.
Galy
,
G. N.
Kashanchi
,
A.
Dashti
,
Y.
Yan
,
M.
Li
,
D. M.
Butts
,
P. E.
McNeil
,
E.
Lan
,
B.
Dunn
,
Y.
Hu
,
S. H.
Tolbert
, and
L.
Pilon
,
J. Colloid Interface Sci.
606
,
884
(
2022
).
28.
M.
Marszewski
,
A.
Dashti
,
P. E.
McNeil
,
M.
Fox
,
V.
Wall
,
D. M.
Butts
,
S. C.
King
,
G. N.
Kashanchi
,
S. H.
Tolbert
,
B.
Dunn
, and
L.
Pilon
,
Microporous Mesoporous Mater.
330
,
111569
(
2022
).
29.
A.
Du
,
H.
Wang
,
B.
Zhou
,
C.
Zhang
,
X.
Wu
,
Y.
Ge
,
T.
Niu
,
X.
Ji
,
T.
Zhang
,
Z.
Zhang
,
G.
Wu
, and
J.
Shen
,
Chem. Mater.
30
,
6849
(
2018
).
30.
J.-J.
Zhao
,
Y.-Y.
Duan
,
X.-D.
Wang
, and
B.-X.
Wang
,
J. Non-Cryst. Solids
358
,
1287
(
2012
).
31.
C.
Takai-Yamashita
and
M.
Fuji
,
Adv. Powder Technol.
31
,
804
(
2020
).
32.
S. G.
Jennings
,
J. Aerosol Sci.
19
,
159
(
1988
).
33.
Y.
Yan
,
M.
Li
,
S.
King
,
T.
Galy
,
M.
Marszewski
,
J. S.
Kang
,
L.
Pilon
,
Y.
Hu
, and
S. H.
Tolbert
,
J. Phys. Chem. Lett.
11
,
3731
(
2020
).
34.
M.
Kobayashi
,
F.
Juillerat
,
P.
Galletto
,
P.
Bowen
, and
M.
Borkovec
,
Langmuir
21
,
5761
(
2005
).
35.
V. V.
Skorokhod
,
O. I.
Get’man
,
A. E.
Zuev
, and
S. P.
Rakitin
,
Powder Metall. Met. Ceram.
27
,
941
(
1988
).
36.
T.
Galy
,
D.
Mu
,
M.
Marszewski
, and
L.
Pilon
,
Comput. Mater. Sci.
157
,
156
(
2019
).
37.
J. C.
Brinker
and
G. W.
Scherer
,
Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing
(
Academic Press, Inc.
,
1990
).
38.
P. C.
Hiemenz
and
R.
Rajagopalan
,
Principles of Colloid and Surface Chemistry
, 3rd ed. (
Marcel Dekker, Inc.
,
1997
).
39.
E. J. W.
Verwey
and
J. Th. G.
Overbeek
,
Theory of Stability of Lyophobic Colloids
(
Elsevier Publishing Company, Inc.
,
1948
).
40.
G. D.
Parfitt
,
Dispersion of Powders in Liquids
(
Elsevier Applied Science
,
1982
).
41.
H.
Kihira
,
N.
Ryde
, and
E.
Matijević
,
J. Chem. Soc., Faraday Trans.
88
,
2379
(
1992
).
42.
R. D.
Harding
,
J. Colloid Interface Sci.
35
,
172
(
1971
).
43.
S.
Barany
,
M. A.
Cohen Stuart
, and
G. J.
Fleer
,
Colloids Surf., A
106
,
213
(
1996
).
44.
T.
Li
,
A. J.
Senesi
, and
B.
Lee
,
Chem. Rev.
116
,
11128
(
2016
).
45.
G.
Beaucage
,
J. Appl. Crystallogr.
29
,
134
(
1996
).
46.
J.
Teixeira
,
J. Appl. Crystallogr.
21
,
781
(
1988
).
47.
H. D.
Bale
and
P. W.
Schmidt
,
Phys. Rev. Lett.
53
,
596
(
1984
).
48.
B.
Hammouda
,
J. Appl. Crystallogr.
43
,
716
(
2010
).
49.
G.
Beaucage
,
H. K.
Kammler
, and
S. E.
Pratsinis
,
J. Appl. Crystallogr.
37
,
523
(
2004
).
50.
D. W.
Schaefer
,
T.
Rieker
,
M.
Agamalian
,
J. S.
Lin
,
D.
Fischer
,
S.
Sukumaran
,
C.
Chen
,
G.
Beaucage
,
C.
Herd
, and
J.
Ivie
,
J. Appl. Crystallogr.
33
,
587
(
2000
).
51.
A.-S.
Robbes
,
J.
Jestin
,
F.
Meneau
,
F.
Dalmas
,
O.
Sandre
,
J.
Perez
,
F.
Boué
, and
F.
Cousin
,
Macromolecules
43
,
5785
(
2010
).
52.
J.
Wang
,
R. E.
Winans
,
S. L.
Anderson
,
S.
Seifert
,
B.
Lee
,
P. J.
Chupas
,
Y.
Ren
,
S.
Lee
, and
Y.
Liu
,
J. Phys. Chem. C
117
,
22627
(
2013
).
53.
Y.-C.
Lin
,
C.-Y.
Chen
,
H.-L.
Chen
,
T.
Hashimoto
,
S.-A.
Chen
, and
Y.-C.
Li
,
J. Chem. Phys.
142
,
214905
(
2015
).
54.
H. H.
Weldes
,
Ind. Eng. Chem. Prod. Res. Dev.
9
,
249
(
1970
).
55.
A.
Navarrete-Guijosa
,
R.
Navarrete-Casas
,
C.
Valenzuela-Calahorro
,
J. D.
López-González
, and
A.
García-Rodríguez
,
J. Colloid Interface Sci.
264
,
60
(
2003
).
56.
J.
Rouquerol
,
F.
Rouquerol
,
P.
Llewellyn
,
G.
Maurin
, and
K. S. W.
Sing
,
Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications
, 2nd ed. (
Academic Press, Inc.
,
2013
).
57.
R. J.
Rumble
,
CRC Handbook of Chemistry and Physics
, 98th ed. (
CRC Press, Taylor & Francis Group
,
2017
).
58.
H.
Noano
,
M.
Hakuman
, and
T.
Shiono
,
J. Colloid Interface Sci.
186
,
360
(
1997
).
59.
M.
Kruk
and
M.
Jaroniec
,
Chem. Mater.
13
,
3169
(
2001
).
60.
M.
Kruk
,
M.
Jaroniec
, and
A.
Sayari
,
Langmuir
13
,
6267
(
1997
).
61.
E. P.
Barrett
,
L. G.
Joyner
, and
P. P.
Halenda
,
J. Am. Chem. Soc.
73
,
373
(
1951
).
62.
M.
Jaroniec
,
M.
Kruk
, and
J. P.
Olivier
,
Langmuir
15
,
5410
(
1999
).
63.
R. W. G.
Hunt
,
The Reproduction of Colour
, 6th ed. (
John Wiley and Sons
,
2004
).
64.
NFRC 300-2014
,
Test Method for Determining the Solar Optical Properties of Glazing Materials and Systems
(
National Fenestration Rating Council
,
2013
).
65.
A.
Ricklefs
,
A. M.
Thiele
,
G.
Falzone
,
G.
Sant
, and
L.
Pilon
,
Int. J. Heat Mass Transfer
104
,
71
(
2017
).
66.
ASTM C177-19
,
Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
(
ASTM International
,
2019
).
67.
U.
Hammerschmidt
,
Int. J. Thermophys.
23
,
1551
(
2001
).
68.
G. M.
Pharr
and
W. C.
Oliver
,
MRS Bull.
17
,
28
(
1992
).
69.
S. P.
Patil
,
A.
Rege
,
M.
Itskov
, and
B.
Markert
,
J. Phys. Chem. B
121
,
5660
(
2017
).
70.
H.-S.
Ma
,
A. P.
Roberts
,
J.-H.
Prévost
,
R.
Jullien
, and
G. W.
Scherer
,
J. Non-Cryst. Solids
277
,
127
(
2000
).
71.
CRC Handbook of Chemistry and Physics
, 98th ed., edited by
J. R.
Rumble
(
CRC Press, Taylor & Francis Group
,
New York
,
2017
).
72.
J.
Ilavsky
and
P. R.
Jemian
,
J. Appl. Crystallogr.
42
,
347
(
2009
).
73.
G.
Beaucage
,
T. A.
Ulibarri
,
E. P.
Black
, and
D. W.
Schaefer
,
ACS Symp. Ser.
585
,
97
(
1995
).
74.
G.
Beaucage
,
S.
Rane
,
S.
Sukumaran
,
M. M.
Satkowski
,
L. A.
Schechtman
, and
Y.
Doi
,
Macromolecules
30
,
4158
(
1997
).
75.
G.
Beaucage
,
J. Appl. Crystallogr.
28
,
717
(
1995
).
76.
G. C.
Bushell
,
Y. D.
Yan
,
D.
Woodfield
,
J.
Raper
, and
R.
Amal
,
Adv. Colloid Interface Sci.
95
,
1
(
2002
).
77.
A.
McGlasson
,
K.
Rishi
,
G.
Beaucage
,
M.
Chauby
,
V.
Kuppa
,
J.
Ilavsky
, and
M.
Rackaitis
,
Macromolecules
53
,
2235
(
2020
).
78.
M. L.
Fisher
,
M.
Colic
,
M. P.
Rao
, and
F. F.
Lange
,
J. Am. Ceram. Soc.
84
,
713
(
2001
).
79.
J. A. A.
Júnior
and
J. B.
Baldo
,
New J. Glass Ceram.
4
,
29
(
2014
).
80.
B.
Knoblich
and
T.
Gerber
,
J. Non-Cryst. Solids
283
,
109
(
2001
).
81.
B.
Knoblich
and
T.
Gerber
,
J. Non-Cryst. Solids
296
,
81
(
2001
).
82.
M.
Rubin
and
C. M.
Lampert
,
Sol. Energy Mater.
7
,
393
(
1983
).
83.
C.
Aubert
and
D. S.
Cannell
,
Phys. Rev. Lett.
56
,
738
(
1986
).
84.
Y.
Yan
,
S. C.
King
,
M.
Li
,
T.
Galy
,
M.
Marszewski
,
J. S.
Kang
,
L.
Pilon
,
Y.
Hu
, and
S. H.
Tolbert
,
J. Phys. Chem. C
123
,
21721
(
2019
).
85.
T.-Y.
Wei
,
T.-F.
Chang
,
S.-Y.
Lu
, and
Y.-C.
Chang
,
J. Am. Ceram. Soc.
90
,
2003
(
2007
).
86.
U. K. H.
Bangi
,
I.-K.
Jung
,
C.-S.
Park
,
S.
Baek
, and
H.-H.
Park
,
Solid State Sci.
18
,
50
(
2013
).
87.
A. Alperen
Günay
,
H.
Kim
,
N.
Nagarajan
,
M.
Lopez
,
R.
Kantharaj
,
A.
Alsaati
,
A.
Marconnet
,
A.
Lenert
, and
N.
Miljkovic
,
ACS Appl. Mater. Interfaces
10
,
12603
(
2018
).
88.
A. P.
Rao
,
G. M.
Pajonk
, and
A. V.
Rao
,
J. Mater. Sci.
40
,
3481
(
2005
).
89.
J.-J. Y.-Y.
Duan
,
X.-D.
Wang
, and
B.-X.
Wang
,
J. Phys. D: Appl. Phys.
46
,
015304
(
2013
).
90.
X.
Lu
,
R.
Caps
,
J.
Fricke
,
C. T.
Alviso
, and
R. W.
Pekala
,
J. Non-Cryst. Solids
188
,
226
(
1995
).
91.
G.
Wei
,
Y.
Liu
,
X.
Zhang
,
F.
Yu
, and
X.
Du
,
Int. J. Heat Mass Transfer
54
,
2355
(
2011
).
92.
J.
Fricke
and
T.
Tillotson
,
Thin Solid Films
297
,
212
(
1997
).

Supplementary Material

You do not currently have access to this content.