Simulations of water near extended hydrophobic spherical solutes have revealed the presence of a region of depleted density and accompanying enhanced density fluctuations. The physical origin of both phenomena has remained somewhat obscure. We investigate these effects employing a mesoscopic binding potential analysis, classical density functional theory (DFT) calculations for a simple Lennard-Jones solvent, and Grand Canonical Monte Carlo (GCMC) simulations of a monatomic water (mw) model. We argue that the density depletion and enhanced fluctuations are near-critical phenomena. Specifically, we show that they can be viewed as remnants of the critical drying surface phase transition that occurs at bulk liquid–vapor coexistence in the macroscopic planar limit, i.e., as the solute radius Rs. Focusing on the radial density profile ρ(r) and a sensitive spatial measure of fluctuations, the local compressibility profile χ(r), our binding potential analysis provides explicit predictions for the manner in which the key features of ρ(r) and χ(r) scale with Rs, the strength of solute–water attraction ɛsf, and the deviation from liquid–vapor coexistence of the chemical potential, δμ. These scaling predictions are confirmed by our DFT calculations and GCMC simulations. As such, our theory provides a firm basis for understanding the physics of hydrophobic solvation.

1.
D. M.
Huang
and
D.
Chandler
, “
The hydrophobic effect and the influence of solute-solvent attractions
,”
J. Phys. Chem. B
106
,
2047
2053
(
2002
).
2.
A.
Oleinikova
and
I.
Brovchenko
, “
Thermodynamic properties of hydration water around solutes: Effect of solute size and water–solute interaction
,”
J. Phys. Chem. B
116
,
14650
14659
(
2012
).
3.
J.
Mittal
and
G.
Hummer
, “
Static and dynamic correlations in water at hydrophobic interfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
20130
20135
(
2008
).
4.
S.
Sarupria
and
S.
Garde
, “
Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins
,”
Phys. Rev. Lett.
103
,
037803
(
2009
).
5.
A. J.
Patel
,
P.
Varilly
,
S. N.
Jamadagni
,
M. F.
Hagan
,
D.
Chandler
, and
S.
Garde
, “
Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function
,”
J. Phys. Chem. B
116
,
2498
2503
(
2012
).
6.
S.
Vaikuntanathan
,
G.
Rotskoff
,
A.
Hudson
, and
P. L.
Geissler
, “
Necessity of capillary modes in a minimal model of nanoscale hydrophobic solvation
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E2224
E2230
(
2016
).
7.
I.
Bischofberger
,
D. C. E.
Calzolari
,
P.
De Los Rios
,
I.
Jelezarov
, and
V.
Trappe
, “
Hydrophobic hydration of poly-N-isopropyl acrylamide: A matter of the mean energetic state of water
,”
Sci. Rep.
4
,
4377
(
2014
).
8.
N. B.
Rego
and
A. J.
Patel
, “
Understanding hydrophobic effects: Insights from water density fluctuations
,”
Annu. Rev. Condens. Matter Phys.
13
,
303
324
(
2022
).
9.
D.
Chandler
, “
Interfaces and the driving force of hydrophobic assembly
,”
Nature
437
,
640
647
(
2005
).
10.
J.
Qvist
,
M.
Davidovic
,
D.
Hamelberg
, and
B.
Halle
, “
A dry ligand-binding cavity in a solvated protein
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
6296
6301
(
2008
).
11.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
, “
Hydrophobicity at small and large length scales
,”
J. Phys. Chem. B
103
,
4570
4577
(
1999
).
12.
N. T.
Southall
and
K. A.
Dill
, “
The mechanism of hydrophobic solvation depends on solute radius
,”
J. Phys. Chem. B
104
,
1326
1331
(
2000
).
13.
F. H.
Stillinger
, “
Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory
,”
J. Solution Chem.
2
,
141
158
(
1973
).
14.
D. M.
Huang
and
D.
Chandler
, “
Cavity formation and the drying transition in the Lennard-Jones fluid
,”
Phys. Rev. E
61
,
1501
1506
(
2000
).
15.
H.
Acharya
,
S.
Vembanur
,
S. N.
Jamadagni
, and
S.
Garde
, “
Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surface and proteins
,”
Faraday Discuss.
146
,
353
365
(
2010
).
16.
S. I.
Mamatkulov
,
P. K.
Khabibullaev
, and
R. R.
Netz
, “
Water at hydrophobic substrates: Curvature, pressure and temperature effects
,”
Langmuir
20
,
4756
4763
(
2004
).
17.
A. J.
Patel
,
P.
Varilly
, and
D.
Chandler
, “
Fluctuations of water near extended hydrophobic and hydrophilic surfaces
,”
J. Phys. Chem. B
114
,
1632
1637
(
2010
).
18.
M.
Mezger
,
H.
Reichert
,
S.
Schöder
,
J.
Okasinski
,
H.
Schröder
,
H.
Dosch
,
D.
Palms
,
J.
Ralston
, and
V.
Honkimäki
, “
High-resolution in situ x-ray study of the hydrophobic gap at the water–octadecyl-trichlorosilane interface
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
18401
18404
(
2006
).
19.
M.
Mezger
,
F.
Sedlmeier
,
D.
Horinek
,
H.
Reichert
,
D.
Pontoni
, and
H.
Dosch
, “
On the origin of the hydrophobic water gap: An X-ray reflectivity and md simulation study
,”
J. Am. Chem. Soc.
132
,
6735
6741
(
2010
).
20.
B. M.
Ocko
,
A.
Dhinojwala
, and
J.
Daillant
, “
Comment on “How water meets a hydrophobic surface”
,”
Phys. Rev. Lett.
101
,
039601
(
2008
).
21.
S.
Chattopadhyay
,
A.
Uysal
,
B.
Stripe
,
Y.-G.
Ha
,
T. J.
Marks
,
E. A.
Karapetrova
, and
P.
Dutta
, “
How water meets a very hydrophobic surface
,”
Phys. Rev. Lett.
105
,
037803
(
2010
).
22.
A. P.
Willard
and
D.
Chandler
, “
The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapour like
,”
J. Chem. Phys.
141
,
18C519
(
2014
).
23.
R.
Evans
and
N. B.
Wilding
, “
Quantifying density fluctuations in water at a hydrophobic surface: Evidence for critical drying
,”
Phys. Rev. Lett.
115
,
016103
(
2015
).
24.
R.
Evans
,
M. C.
Stewart
, and
N. B.
Wilding
, “
Critical drying of liquids
,”
Phys. Rev. Lett.
117
,
176102
(
2016
).
25.
R.
Evans
,
M. C.
Stewart
, and
N. B.
Wilding
, “
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory
,”
J. Chem. Phys.
147
,
044701
(
2017
).
26.
R.
Evans
,
M. C.
Stewart
, and
N. B.
Wilding
, “
From hydrophilic to superhydrophobic surfaces: A unified picture of the wetting and drying of liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
23901
23908
(
2019
).
27.
R.
Evans
and
M. C.
Stewart
, “
The local compressibility of liquids near non-adsorbing substrates: A useful measure of solvophobicity and hydrophobicity?
,”
J. Phys.: Condens. Matter
27
,
194111
(
2015
).
28.
T.
Eckert
,
N. C. X.
Stuhlmüller
,
F.
Sammüller
, and
M.
Schmidt
, “
Fluctuation profiles in inhomogeneous fluids
,”
Phys. Rev. Lett.
125
,
268004
(
2020
).
29.
M. K.
Coe
,
R.
Evans
, and
N. B.
Wilding
, “
Measures of fluctuations for a liquid near critical drying
,”
Phys. Rev. E
105
,
044801
(
2022
).
30.
C. A.
Cerdeiriña
,
P. G.
Debenedetti
,
P. J.
Rossky
, and
N.
Giovambattista
, “
Evaporation length scales of confined water and some common organic liquids
,”
J. Phys. Chem. Lett.
2
,
1000
1003
(
2011
).
31.
C.
Ebner
,
W. F.
Saam
, and
A. K.
Sen
, “
Critical and multicritical wetting phenomena in systems with long-range forces
,”
Phys. Rev. B
31
,
6134
6136
(
1985
).
32.
C.
Ebner
and
W. F.
Saam
, “
Effect of long-range forces on wetting near bulk critical temperatures: An Ising-model study
,”
Phys. Rev. B
35
,
1822
1834
(
1987
).
33.
M. P.
Nightingale
,
W. F.
Saam
, and
M.
Schick
, “
Wetting and growth behaviors in adsorbed systems with long-range forces
,”
Phys. Rev. B
30
,
3830
3840
(
1984
).
34.
M. K.
Coe
,
R.
Evans
, and
N. B.
Wilding
, “
Density depletion and enhanced fluctuations in water near hydrophobic solutes: Identifying the underlying physics
,”
Phys. Rev. Lett.
128
,
045501
(
2022
).
35.
M. K.
Coe
, “
Hydrophobicity across length scales: The role of surface criticality
,” Ph.D. thesis,
University of Bristol
,
2021
.
36.
R.
Evans
, “
Density functionals in the theory of nonuniform fluids
,” in
Fundamentals of Inhomogeneous Fluids
, edited by
D.
Henderson
(
Marcel Dekker
,
1992
), pp.
85
175
.
37.
M. C.
Stewart
, “
Effect of substrate geometry on interfacial phase transitions
,” Ph.D. thesis,
University of Bristol
,
2006
.
38.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
39.
V.
Molinero
and
E. B.
Moore
, “
Water modelled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
40.
M. C.
Stewart
and
R.
Evans
, “
Critical drying at a spherical substrate
,”
J. Phys.: Condens. Matter
17
,
S3499
S3505
(
2005
).
41.
M. C.
Stewart
and
R.
Evans
, “
Wetting and drying at a curved substrate: Long-ranged forces
,”
Phys. Rev. E
71
,
011602
(
2005
).
42.
R.
Evans
,
J. R.
Henderson
, and
R.
Roth
, “
Nonanalytic curvature contributions to solvation free energies: Influence of drying
,”
J. Chem. Phys.
121
,
12074
12084
(
2004
).
43.
S.
Dietrich
, “
Wetting phenomena
,” in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic Press
,
1988
), Vol. 12.
44.
M.
Schick
, “
Introduction to wetting phenomena
,” in
Les Houches 1988 Session XLVIII Liquids at Interfaces
, edited by
J.
Charvolin
,
J. F.
Joanny
, and
J.
Zinn-Justin
(
North-Holland
,
1990
).
45.
T.
Bieker
and
S.
Dietrich
, “
Wetting of curved surfaces
,”
Physica A
252
,
85
137
(
1998
).
46.
S.
Dietrich
and
M.
Napiórkowski
, “
Analytic results for wetting transitions in the presence of van der Waals tails
,”
Phys. Rev. A
43
,
1861
1885
(
1991
).
47.
M. K.
Coe
, “
cDFT Package
,” https://github.com/marykcoe/cDFT_Package,
2021
(Online).
48.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
200
(
1979
).
49.
D. E.
Sullivan
and
M. M. T.
da Gama
, “
Wetting transitions and multilayer adsorption at fluid interfaces
,” in
Fluid Interfacial Phenomena
, edited by
C. A.
Croxton
(
John Wiley & Sons
,
1986
).
50.
M. K.
Coe
,
R.
Evans
, and
N. B.
Wilding
, “
The coexistence curve and surface tension of a monatomic water model
,”
J. Chem. Phys.
156
,
154505
(
2022
).
51.
M. K.
Coe
, “
GCMC Package for mw water
,” https://github.com/marykcoe/Mont_Carlo,
2021
(Online).
52.
E. W.
Lemmon
,
M. O.
McLinden
, and
D. G.
Friend
, “
Thermophysical properties of fluid systems
,” in
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
Gaithersburg MD
,
2021
); accessed 29 June 2021.
53.
S. N.
Jamadagni
,
R.
Godawat
, and
S.
Garde
, “
Hydrophobicity of proteins and interfaces: Insights from density fluctuations
,”
Annu. Rev. Chem. Biomol. Eng.
2
,
147
171
(
2011
).
54.
D. M.
Huang
,
P. L.
Geissler
, and
D.
Chandler
, “
Scaling of hydrophobic solvation free energies
,”
J. Phys. Chem. B
105
,
6704
6709
(
2001
).
55.
U.
Schnupf
and
J. W.
Brady
, “
Water structuring above solutes with planar hydrophobic surfaces
,”
Phys. Chem. Chem. Phys.
19
,
11851
11863
(
2017
).
56.
J. W. G.
Tyrrell
and
P.
Attard
, “
Images of nanobubbles on hydrophobic surfaces and their interactions
,”
Phys. Rev. Lett.
87
,
176104
(
2001
).
57.
R.
Steitz
,
T.
Gutberlet
,
T.
Hauss
,
B.
Klösgen
,
R.
Krastev
,
S.
Schemmel
,
A. C.
Simonsen
, and
G. H.
Findenegg
, “
Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate
,”
Langmuir
19
,
2409
2418
(
2003
).
58.

We note that the term “dewetting” is most commonly used in a rather different context of the rupturing of a thin film of liquid on a planar substrate.

You do not currently have access to this content.