Coarse-grained (CG) models facilitate an efficient exploration of complex systems by reducing the unnecessary degrees of freedom of the fine-grained (FG) system while recapitulating major structural correlations. Unlike structural properties, assessing dynamic properties in CG modeling is often unfeasible due to the accelerated dynamics of the CG models, which allows for more efficient structural sampling. Therefore, the ultimate goal of the present series of articles is to establish a better correspondence between the FG and CG dynamics. To assess and compare dynamical properties in the FG and the corresponding CG models, we utilize the excess entropy scaling relationship. For Paper I of this series, we provide evidence that the FG and the corresponding CG counterpart follow the same universal scaling relationship. By carefully reviewing and examining the literature, we develop a new theory to calculate excess entropies for the FG and CG systems while accounting for entropy representability. We demonstrate that the excess entropy scaling idea can be readily applied to liquid water and methanol systems at both the FG and CG resolutions. For both liquids, we reveal that the scaling exponents remain unchanged from the coarse-graining process, indicating that the scaling behavior is universal for the same underlying molecular systems. Combining this finding with the concept of mapping entropy in CG models, we show that the missing entropy plays an important role in accelerating the CG dynamics.

1.
F.
Müller‐Plathe
,
ChemPhysChem
3
(
9
),
754
769
(
2002
).
2.
H. A.
Scheraga
,
M.
Khalili
, and
A.
Liwo
,
Annu. Rev. Phys. Chem.
58
,
57
83
(
2007
).
3.
G. A.
Voth
,
Coarse-graining of Condensed Phase and Biomolecular Systems
(
CRC Press
,
2008
).
4.
C.
Peter
and
K.
Kremer
,
Soft Matter
5
(
22
),
4357
4366
(
2009
).
5.
T.
Murtola
,
A.
Bunker
,
I.
Vattulainen
,
M.
Deserno
, and
M.
Karttunen
,
Phys. Chem. Chem. Phys.
11
(
12
),
1869
1892
(
2009
).
6.
S.
Riniker
and
W. F.
van Gunsteren
,
J. Chem. Phys.
134
(
8
),
084110
(
2011
).
7.
W. G.
Noid
,
J. Chem. Phys.
139
(
9
),
090901
(
2013
).
8.
M. G.
Saunders
and
G. A.
Voth
,
Annu. Rev. Biophys.
42
,
73
93
(
2013
).
9.
A. J.
Pak
and
G. A.
Voth
,
Curr. Opin. Struct. Biol.
52
,
119
126
(
2018
).
10.
J.
Jin
,
A. J.
Pak
,
A. E. P.
Durumeric
,
T. D.
Loose
, and
G. A.
Voth
,
J. Chem. Theory Comput.
18
(
10
),
5759
5791
(
2022
).
11.
J. M. A.
Grime
and
G. A.
Voth
,
Biophys. J.
103
(
8
),
1774
1783
(
2012
).
12.
J. M. A.
Grime
,
J. F.
Dama
,
B. K.
Ganser-Pornillos
,
C. L.
Woodward
,
G. J.
Jensen
,
M.
Yeager
, and
G. A.
Voth
,
Nat. Commun.
7
(
1
),
11568
(
2016
).
13.
A. J.
Pak
,
J. M. A.
Grime
,
P.
Sengupta
,
A. K.
Chen
,
A. E. P.
Durumeric
,
A.
Srivastava
,
M.
Yeager
,
J. A. G.
Briggs
,
J.
Lippincott-Schwartz
, and
G. A.
Voth
,
Proc. Natl. Acad. Sci. U. S. A.
114
(
47
),
E10056
E10065
(
2017
).
14.
A. J.
Pak
,
J. M. A.
Grime
,
A.
Yu
, and
G. A.
Voth
,
J. Am. Chem. Soc.
141
(
26
),
10214
10224
(
2019
).
15.
A.
Yu
,
K. A.
Skorupka
,
A. J.
Pak
,
B. K.
Ganser-Pornillos
,
O.
Pornillos
, and
G. A.
Voth
,
Nat. Commun.
11
(
1
),
1307
(
2020
).
16.
W.
Xia
,
J.
Song
,
C.
Jeong
,
D. D.
Hsu
,
F. R.
Phelan
, Jr.
,
J. F.
Douglas
, and
S.
Keten
,
Macromolecules
50
(
21
),
8787
8796
(
2017
).
17.
W.
Xia
,
J.
Song
,
N. K.
Hansoge
,
F. R.
Phelan
, Jr.
,
S.
Keten
, and
J. F.
Douglas
,
J. Phys. Chem. B
122
(
6
),
2040
2045
(
2018
).
18.
W.
Xia
,
N. K.
Hansoge
,
W.-S.
Xu
,
F. R.
Phelan
, Jr.
,
S.
Keten
, and
J. F.
Douglas
,
Sci. Adv.
5
(
4
),
eaav4683
(
2019
).
19.
M.
Dunbar
and
S.
Keten
,
Macromolecules
53
(
21
),
9397
9405
(
2020
).
20.
A.
Giuntoli
,
N. K.
Hansoge
,
A.
van Beek
,
Z.
Meng
,
W.
Chen
, and
S.
Keten
,
npj Comput. Mater.
7
(
1
),
168
(
2021
).
21.
W.
Tschöp
,
K.
Kremer
,
J.
Batoulis
,
T.
Bürger
, and
O.
Hahn
,
Acta Polym.
49
(
2–3
),
61
74
(
1998
).
22.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
125
,
151101
(
2006
).
23.
C.
Hijón
,
P.
Español
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
,
Faraday Discuss.
144
,
301
322
(
2010
).
24.
D.
Fritz
,
K.
Koschke
,
V. A.
Harmandaris
,
N. F. A.
van der Vegt
, and
K.
Kremer
,
Phys. Chem. Chem. Phys.
13
(
22
),
10412
10420
(
2011
).
25.
Z.
Li
,
X.
Bian
,
X.
Li
, and
G. E.
Karniadakis
,
J. Chem. Phys.
143
(
24
),
243128
(
2015
).
26.
Z.
Li
,
H. S.
Lee
,
E.
Darve
, and
G. E.
Karniadakis
,
J. Chem. Phys.
146
(
1
),
014104
(
2017
).
27.
R.
Zwanzig
,
J. Chem. Phys.
33
(
5
),
1338
1341
(
1960
).
28.
R.
Zwanzig
,
Phys. Rev.
124
(
4
),
983
(
1961
).
29.
R.
Zwanzig
,
Physica
30
(
6
),
1109
1123
(
1964
).
30.
H.
Mori
,
Prog. Theor. Phys.
33
(
3
),
423
455
(
1965
).
31.
P.
Stinis
,
Proc. R. Soc. London, Ser. A
471
(
2176
),
20140446
(
2015
).
32.
T.
Kinjo
and
S.-a.
Hyodo
,
Phys. Rev. E
75
(
5
),
051109
(
2007
).
33.
H.
Lei
,
B.
Caswell
, and
G. E.
Karniadakis
,
Phys. Rev. E
81
(
2
),
026704
(
2010
).
34.
L.
Gao
and
W.
Fang
,
J. Chem. Phys.
135
(
18
),
184101
(
2011
).
35.
S.
Izvekov
,
J. Chem. Phys.
138
(
13
),
134106
(
2013
).
36.
Y.
Yoshimoto
,
I.
Kinefuchi
,
T.
Mima
,
A.
Fukushima
,
T.
Tokumasu
, and
S.
Takagi
,
Phys. Rev. E
88
(
4
),
043305
(
2013
).
37.
Z.
Li
,
X.
Bian
,
B.
Caswell
, and
G. E.
Karniadakis
,
Soft Matter
10
(
43
),
8659
8672
(
2014
).
38.
A.
Davtyan
,
J. F.
Dama
,
G. A.
Voth
, and
H. C.
Andersen
,
J. Chem. Phys.
142
(
15
),
154104
(
2015
).
39.
A.
Davtyan
,
G. A.
Voth
, and
H. C.
Andersen
,
J. Chem. Phys.
145
(
22
),
224107
(
2016
).
40.
H.
Lei
,
X.
Yang
,
Z.
Li
, and
G. E.
Karniadakis
,
J. Comput. Phys.
330
,
571
593
(
2017
).
41.
S.
Izvekov
,
J. Chem. Phys.
146
(
12
),
124109
(
2017
).
42.
S.
Izvekov
,
Phys. Rev. E
95
(
1
),
013303
(
2017
).
43.
G.
Jung
,
M.
Hanke
, and
F.
Schmid
,
J. Chem. Theory Comput.
13
(
6
),
2481
2488
(
2017
).
44.
G.
Jung
,
M.
Hanke
, and
F.
Schmid
,
Soft Matter
14
(
46
),
9368
9382
(
2018
).
45.
N.
Bockius
,
J.
Shea
,
G.
Jung
,
F.
Schmid
, and
M.
Hanke
,
J. Phys.: Condens. Matter
33
(
21
),
214003
(
2021
).
46.
F.
Glatzel
and
T.
Schilling
,
Europhys. Lett.
136
(
3
),
36001
(
2021
).
47.
Y.
Han
,
J.
Jin
, and
G. A.
Voth
,
J. Chem. Phys.
154
(
8
),
084122
(
2021
).
48.
V. A.
Harmandaris
and
K.
Kremer
,
Soft Matter
5
(
20
),
3920
3926
(
2009
).
49.
V. A.
Harmandaris
and
K.
Kremer
,
Macromolecules
42
(
3
),
791
802
(
2009
).
50.
K. M.
Salerno
,
A.
Agrawal
,
D.
Perahia
, and
G. S.
Grest
,
Phys. Rev. Lett.
116
(
5
),
058302
(
2016
).
51.
I. Y.
Lyubimov
,
J.
McCarty
,
A.
Clark
, and
M. G.
Guenza
,
J. Chem. Phys.
132
(
22
),
224903
(
2010
).
52.
I.
Lyubimov
and
M. G.
Guenza
,
Phys. Rev. E
84
(
3
),
031801
(
2011
).
53.
I. Y.
Lyubimov
and
M. G.
Guenza
,
J. Chem. Phys.
138
(
12
),
12A546
(
2013
).
54.
J.
McCarty
,
A. J.
Clark
,
J.
Copperman
, and
M. G.
Guenza
,
J. Chem. Phys.
140
(
20
),
204913
(
2014
).
55.
J. F.
Rudzinski
,
Computation
7
(
3
),
42
(
2019
).
56.
V.
Klippenstein
,
M.
Tripathy
,
G.
Jung
,
F.
Schmid
, and
N. F. A.
van der Vegt
,
J. Phys. Chem. B
125
,
4931
4954
(
2021
).
57.
Y.
Rosenfeld
,
Phys. Rev. A
15
(
6
),
2545
(
1977
).
58.
Y.
Rosenfeld
,
Chem. Phys. Lett.
48
(
3
),
467
468
(
1977
).
59.
Y.
Rosenfeld
,
J. Phys.: Condens. Matter
11
(
28
),
5415
(
1999
).
60.
M.
Dzugutov
,
Nature
381
(
6578
),
137
139
(
1996
).
61.
S.
Acharya
and
B.
Bagchi
,
J. Chem. Phys.
153
,
184701
(
2020
).
62.
L. E.
Reichl
,
A Modern Course in Statistical Physics
(
Wiley VCH
,
2016
).
63.
J. C.
Dyre
,
J. Chem. Phys.
149
(
21
),
210901
(
2018
).
64.
G.
Li
,
C.
Liu
, and
Z.
Zhu
,
J. Non-Cryst. Solids
351
(
10–11
),
946
950
(
2005
).
65.
N.
Jakse
and
A.
Pasturel
,
Sci. Rep.
6
,
20689
(
2016
).
66.
M.
Malvaldi
and
C.
Chiappe
,
J. Chem. Phys.
132
(
24
),
244502
(
2010
).
67.
E.
Voyiatzis
,
F.
Müller-Plathe
, and
M. C.
Böhm
,
Macromolecules
46
(
21
),
8710
8723
(
2013
).
68.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
Phys. Rev. Lett.
96
(
17
),
177804
(
2006
).
69.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Phys. Chem. B
111
(
34
),
10054
10063
(
2007
).
70.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
2008
).
71.
D. R.
Reichman
and
P.
Charbonneau
,
J. Stat. Mech.: Theory Exp.
2005
(
05
),
P05013
.
72.
A.
Samanta
,
S. M.
Ali
, and
S. K.
Ghosh
,
Phys. Rev. Lett.
87
(
24
),
245901
(
2001
).
73.
A.
Samanta
,
S. M.
Ali
, and
S. K.
Ghosh
,
Phys. Rev. Lett.
92
(
14
),
145901
(
2004
).
74.
M. K.
Nandi
,
A.
Banerjee
,
S.
Sengupta
,
S.
Sastry
, and
S. M.
Bhattacharyya
,
J. Chem. Phys.
143
(
17
),
174504
(
2015
).
75.
M.
Dzugutov
,
E.
Aurell
, and
A.
Vulpiani
,
Phys. Rev. Lett.
81
(
9
),
1762
(
1998
).
76.
H.
Pang
,
Y.-h.
Shin
,
D.
Ihm
,
E. K.
Lee
, and
O.
Kum
,
Phys. Rev. E
62
(
5
),
6516
(
2000
).
77.
S.
Bastea
,
Phys. Rev. Lett.
93
(
19
),
199603
(
2004
).
78.
J. A.
Armstrong
,
C.
Chakravarty
, and
P.
Ballone
,
J. Chem. Phys.
136
(
12
),
124503
(
2012
).
79.
M. S.
Shell
,
J. Chem. Phys.
137
(
8
),
084503
(
2012
).
80.
G. G.
Rondina
,
M. C.
Böhm
, and
F.
Müller-Plathe
,
J. Chem. Theory Comput.
16
(
3
),
1431
1447
(
2020
).
81.
M. P.
Bernhardt
,
M.
Dallavalle
, and
N. F. A.
Van der Vegt
,
Soft Mater
18
(
2–3
),
274
(
2020
).
82.
M.
Dzugutov
,
Phys. Rev. E
65
(
3
),
032501
(
2002
).
83.
R. V.
Vaz
,
A. L.
Magalhães
,
D. L. A.
Fernandes
, and
C. M.
Silva
,
Chem. Eng. Sci.
79
,
153
162
(
2012
).
84.
T. B.
Schrøder
,
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
, and
J. C.
Dyre
,
J. Chem. Phys.
131
(
23
),
234503
(
2009
).
85.
N.
Gnan
,
T. B.
Schrøder
,
U. R.
Pedersen
,
N. P.
Bailey
, and
J. C.
Dyre
,
J. Chem. Phys.
131
(
23
),
234504
(
2009
).
86.
R.
Sharma
,
M.
Agarwal
, and
C.
Chakravarty
,
Mol. Phys.
106
(
15
),
1925
1938
(
2008
).
87.
M.
Agarwal
,
M.
Singh
,
R.
Sharma
,
M.
Parvez Alam
, and
C.
Chakravarty
,
J. Phys. Chem. B
114
(
20
),
6995
7001
(
2010
).
88.
M.
Agarwal
,
M. P.
Alam
, and
C.
Chakravarty
,
J. Phys. Chem. B
115
(
21
),
6935
6945
(
2011
).
89.
H. S.
Green
,
The Molecular Theory of Fluids
(
North-Holland
,
Amsterdam
,
1952
).
90.
D. C.
Wallace
,
Phys. Lett. A
122
(
8
),
418
420
(
1987
).
91.
D. C.
Wallace
,
J. Chem. Phys.
87
(
4
),
2282
2284
(
1987
).
92.
D. C.
Wallace
,
Phys. Rev. A
39
(
9
),
4843
(
1989
).
93.
D. C.
Wallace
,
Proc. R. Soc. London, Ser. A
433
(
1889
),
615
630
(
1991
).
94.
H. J.
Raveché
,
J. Chem. Phys.
55
(
5
),
2242
2250
(
1971
).
95.
A.
Baranyai
and
D. J.
Evans
,
Phys. Rev. A
40
(
7
),
3817
(
1989
).
96.
J.-L.
Bretonnet
,
J. Chem. Phys.
117
(
20
),
9370
9373
(
2002
).
97.
T.
Goel
,
C. N.
Patra
,
T.
Mukherjee
, and
C.
Chakravarty
,
J. Chem. Phys.
129
(
16
),
164904
(
2008
).
98.
R.
Chopra
,
T. M.
Truskett
, and
J. R.
Errington
,
J. Phys. Chem. B
114
(
49
),
16487
16493
(
2010
).
99.
G.
Galliero
,
C.
Boned
, and
J.
Fernández
,
J. Chem. Phys.
134
(
6
),
064505
(
2011
).
100.
B. S.
Jabes
and
C.
Chakravarty
,
J. Chem. Phys.
136
(
14
),
144507
(
2012
).
101.
R. D.
Mountain
and
H. J.
Raveché
,
J. Chem. Phys.
55
(
5
),
2250
2255
(
1971
).
102.
I.
Borzsák
and
A.
Baranyai
,
Chem. Phys.
165
(
2–3
),
227
230
(
1992
).
103.
B. B.
Laird
and
A. D. J.
Haymet
,
Phys. Rev. A
45
(
8
),
5680
(
1992
).
104.
F.
Saija
,
A. M.
Saitta
, and
P. V.
Giaquinta
,
J. Chem. Phys.
119
(
7
),
3587
3589
(
2003
).
105.
Z.
Yan
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. E
78
(
5
),
051201
(
2008
).
106.
Y. D.
Fomin
and
V. N.
Ryzhov
,
Phys. Lett. A
375
(
22
),
2181
2184
(
2011
).
107.
D.
Dhabal
,
A. H.
Nguyen
,
M.
Singh
,
P.
Khatua
,
V.
Molinero
,
S.
Bandyopadhyay
, and
C.
Chakravarty
,
J. Chem. Phys.
143
(
16
),
164512
(
2015
).
108.
J.
Zielkiewicz
,
J. Phys. Chem. B
112
(
26
),
7810
7815
(
2008
).
109.
T.
Lazaridis
and
M.
Karplus
,
J. Chem. Phys.
105
(
10
),
4294
4316
(
1996
).
110.
T.
Lazaridis
,
J. Phys. Chem. B
104
(
20
),
4964
4979
(
2000
).
111.
A.
Kuffel
and
J.
Zielkiewicz
,
J. Phys. Chem. B
116
(
40
),
12113
12124
(
2012
).
112.
A.
Kuffel
,
D.
Czapiewski
, and
J.
Zielkiewicz
,
J. Chem. Phys.
141
(
5
),
055103
(
2014
).
113.
P.
Kumar
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U. S. A.
106
(
52
),
22130
22134
(
2009
).
114.
J.
Zielkiewicz
,
J. Chem. Phys.
123
(
10
),
104501
(
2005
).
115.
J.
Zielkiewicz
,
J. Chem. Phys.
128
(
19
),
196101
(
2008
).
116.
L.
Wang
,
R.
Abel
,
R. A.
Friesner
, and
B. J.
Berne
,
J. Chem. Theory Comput.
5
(
6
),
1462
1473
(
2009
).
117.
E.
Giuffré
,
S.
Prestipino
,
F.
Saija
,
A. M.
Saitta
, and
P. V.
Giaquinta
,
J. Chem. Theory Comput.
6
(
3
),
625
636
(
2010
).
118.
S.-T.
Lin
,
M.
Blanco
, and
W. A.
Goddard
 III
,
J. Chem. Phys.
119
(
22
),
11792
11805
(
2003
).
119.
S.-T.
Lin
,
P. K.
Maiti
, and
W. A.
Goddard
 III
,
J. Phys. Chem. B
114
(
24
),
8191
8198
(
2010
).
120.
T. A.
Pascal
,
S.-T.
Lin
, and
W. A.
Goddard
 III
,
Phys. Chem. Chem. Phys.
13
(
1
),
169
181
(
2011
).
121.
J.
Jin
and
W. A.
Goddard
 III
,
J. Phys. Chem. C
119
(
5
),
2622
2629
(
2015
).
122.
W. A.
Goddard
,
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile
(
Springer
,
2021
), pp.
1089
1095
.
123.
T.
Sun
,
J.
Xian
,
H.
Zhang
,
Z.
Zhang
, and
Y.
Zhang
,
J. Chem. Phys.
147
(
19
),
194505
(
2017
).
124.
S. S.
Pannir Sivajothi
,
S.-T.
Lin
, and
P. K.
Maiti
,
J. Phys. Chem. B
123
(
1
),
180
193
(
2018
).
125.
R. A. X.
Persson
,
V.
Pattni
,
A.
Singh
,
S. M.
Kast
, and
M.
Heyden
,
J. Chem. Theory Comput.
13
(
9
),
4467
4481
(
2017
).
126.
V.
Pattni
,
T.
Vasilevskaya
,
W.
Thiel
, and
M.
Heyden
,
J. Phys. Chem. B
121
(
31
),
7431
7442
(
2017
).
127.
M.
Heyden
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
(
2
),
e1390
(
2019
).
128.
J.
Jin
,
A. J.
Pak
, and
G. A.
Voth
,
J. Phys. Chem. Lett.
10
(
16
),
4549
4557
(
2019
).
129.
R.
Palomar
and
G.
Sesé
,
J. Chem. Phys.
148
(
8
),
084504
(
2018
).
130.
D. A.
McQuarrie
and
J. D.
Simon
,
Physical Chemistry: A Molecular Approach
(
University Science Books
,
Sausalito, CA
,
1997
).
131.
R. L.
Henderson
,
Phys. Lett. A
49
(
3
),
197
198
(
1974
).
132.
W. G.
Noid
,
Methods Mol. Biol.
924
,
487
531
(
2013
).
133.
J. W.
Wagner
,
J. F.
Dama
,
A. E. P.
Durumeric
, and
G. A.
Voth
,
J. Chem. Phys.
145
(
4
),
044108
(
2016
).
134.
A. K.
Soper
,
J. Chem. Phys.
101
(
8
),
6888
6901
(
1994
).
135.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
,
J. Chem. Theory Comput.
9
(
2
),
1103
1114
(
2013
).
136.
G. A.
Cisneros
,
K. T.
Wikfeldt
,
L.
Ojamäe
,
J.
Lu
,
Y.
Xu
,
H.
Torabifard
,
A. P.
Bartók
,
G.
Csányi
,
V.
Molinero
, and
F.
Paesani
,
Chem. Rev.
116
(
13
),
7501
7528
(
2016
).
137.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
(
8
),
5262
(
1985
).
138.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
(
13
),
4008
4016
(
2008
).
139.
C.
Scherer
and
D.
Andrienko
,
Phys. Chem. Chem. Phys.
20
(
34
),
22387
22394
(
2018
).
140.
L.
Larini
,
L.
Lu
, and
G. A.
Voth
,
J. Chem. Phys.
132
(
16
),
164107
(
2010
).
141.
J. J.
Hoyt
,
M.
Asta
, and
B.
Sadigh
,
Phys. Rev. Lett.
85
(
3
),
594
(
2000
).
142.
Y. D.
Fomin
,
V.
Ryzhov
, and
N.
Gribova
,
Phys. Rev. E
81
(
6
),
061201
(
2010
).
143.
J.
Jin
,
Y.
Han
,
A. J.
Pak
, and
G. A.
Voth
,
J. Chem. Phys.
154
(
4
),
044104
(
2021
).
144.
J.
Jin
,
A. J.
Pak
,
Y.
Han
, and
G. A.
Voth
,
J. Chem. Phys.
154
(
4
),
044105
(
2021
).
145.
J.
Yvon
,
La théorie statistique des fluides et l’équation d’état
(
Hermann & Cie
,
1935
).
146.
J. G.
Kirkwood
,
J. Chem. Phys.
14
(
3
),
180
201
(
1946
).
147.
M.
Born
and
H.
Green
,
Proc. R. Soc. London, Ser. A
188
(
1012
),
10
18
(
1946
).
148.
N.
Bogolubov
,
Zh. Eksp. Teor. Fiz.
16
(
8
),
691
702
(
1946
).
149.
J. G.
Kirkwood
,
F. P.
Buff
, and
M. S.
Green
,
J. Chem. Phys.
17
(
10
),
988
994
(
1949
).
150.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
(
13
),
134105
(
2005
).
151.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
(
7
),
2469
2473
(
2005
).
152.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
(
24
),
244114
(
2008
).
153.
W. G.
Noid
,
P.
Liu
,
Y.
Wang
,
J.-W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
128
(
24
),
244115
(
2008
).
154.
L.
Lu
,
S.
Izvekov
,
A.
Das
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Theory Comput.
6
(
3
),
954
965
(
2010
).
155.
J.
Jin
,
A.
Yu
, and
G. A.
Voth
,
J. Chem. Theory Comput.
16
(
11
),
6823
6842
(
2020
).
156.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
157.
W. M.
Brown
,
P.
Wang
,
S. J.
Plimpton
, and
A. N.
Tharrington
,
Comput. Phys. Commun.
182
(
4
),
898
911
(
2011
).
158.
W. M.
Brown
,
A.
Kohlmeyer
,
S. J.
Plimpton
, and
A. N.
Tharrington
,
Comput. Phys. Commun.
183
(
3
),
449
459
(
2012
).
159.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
(
24
),
6269
6271
(
1987
).
160.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
,
J. Chem. Phys.
124
(
2
),
024503
(
2006
).
161.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
162.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
,
J. Chem. Phys.
122
(
23
),
234511
(
2005
).
163.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
(
45
),
11225
11236
(
1996
).
164.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
105
(
28
),
6474
6487
(
2001
).
165.
S.
Nosé
,
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
166.
W. G.
Hoover
,
Phys. Rev. A
31
(
3
),
1695
(
1985
).
167.
H. C.
Andersen
,
J. Chem. Phys.
72
(
4
),
2384
2393
(
1980
).
168.
A.
Das
,
L.
Lu
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
136
(
19
),
194115
(
2012
).
169.
L.
Lu
and
G. A.
Voth
,
J. Chem. Phys.
134
(
22
),
224107
(
2011
).
170.
T. T.
Foley
,
M. S.
Shell
, and
W. G.
Noid
,
J. Chem. Phys.
143
(
24
),
243104
(
2015
).
171.
K. M.
Lebold
and
W. G.
Noid
,
J. Chem. Phys.
150
(
1
),
014104
(
2019
).
172.
K. M.
Lebold
and
W. G.
Noid
,
J. Chem. Phys.
151
(
16
),
164113
(
2019
).
173.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
174.
E.
Herbst
,
J. K.
Messer
,
F. C.
De Lucia
, and
P.
Helminger
,
J. Mol. Spectrosc.
108
(
1
),
42
57
(
1984
).
175.
J.
Jin
,
Y.
Han
, and
G. A.
Voth
,
J. Chem. Theory Comput.
14
(
12
),
6159
6174
(
2018
).
176.
J.
Jin
,
K. S.
Schweizer
, and
G. A.
Voth
,
J. Chem. Phys.
158
,
034104
(
2023
); arXiv:2208.01257.
You do not currently have access to this content.