For many laser-based methods of material characterization and analysis, a tensor formulation of theory is necessary, especially in techniques that exploit nonlinear or chiral optics. The fundamental interactions that underpin such methods offer various levels of approach to theory, but the most rigorous often lead to equations of considerable complexity. To compute the values for individual material parameters frequently demands making assumptions of extreme simplicity, overly dependent on calculational method, yet still providing unsatisfactory results. A pragmatic and entirely rigorous symmetry-based approach to the irreducible tensorial structures circumvents many of these problems, securing reliable results and guiding the pathway to applications. Instead of focusing on individual tensor components, such an approach can rapidly determine the number of linearly independent quantities—and hence the number of operationally different setups necessary for full characterization. By such means, one can directly ascertain how variations of optical polarization and beam geometry can reliably capture the response of any material system. The use of an irreducible tensor method operates independently of any means that might be chosen to calculate material properties. It removes the need for common simplifying assumptions, such as the approximation of tensorial structure by a scalar representation, adoption of a two-state model, or disregarding near-resonance damping. It also obviates any dependence on a choice of simulation package or quantum-calculational software. In this paper, the principles are set down and illustrated by application to experiments of varying degrees of complexity, including interactions of growing significance in the realm of chiral nonlinear optics. Limitations of this approach are also critically assessed.

1.
D. L.
Andrews
and
R. H.
Lipson
,
Molecular Photophysics and Spectroscopy
, 2nd ed. (
IOP Publishing
,
2021
).
2.
G. S.
He
,
Nonlinear Optics and Photonics
(
Oxford University Press
,
Oxford
,
2014
).
3.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
Cambridge
,
2004
).
4.
D. L.
Andrews
, “
Quantum formulation for nanoscale optical and material chirality: Symmetry issues, space and time parity, and observables
,”
J. Opt.
20
,
033003
(
2018
).
5.
M. E.
Rose
,
Elementary Theory of Angular Momentum
(
Courier Corporation
,
1995
).
6.
D. A.
Varshalovich
,
A. N.
Moskalev
, and
V. K.
Khersonskii
,
Quantum Theory of Angular Momentum
(
World Scientific
,
Singapore
,
1988
).
7.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids
(
Clarendon Press
,
Oxford
,
1984
), Vol. 1.
8.
D. L.
Andrews
, “
Symmetry characterization in molecular multiphoton spectroscopy
,”
Spectrochim. Acta, Part A
46
,
871
885
(
1990
).
9.
T. A.
Masters
,
R. J.
Marsh
,
T. S.
Blacker
,
D. A.
Armoogum
,
B.
Larijani
, and
A. J.
Bain
, “
Polarized two-photon photoselection in EGFP: Theory and experiment
,”
J. Chem. Phys.
148
,
134311
(
2018
).
10.
A. J.
Bain
,
P.
Chandna
, and
J.
Bryant
, “
Picosecond polarized fluorescence studies of anisotropic fluid media. I. Theory
,”
J. Chem. Phys.
112
,
10418
10434
(
2000
).
11.
Z.
Wu
and
W.
Xiong
, “
Neumann’s principle based eigenvector approach for deriving non-vanishing tensor elements for nonlinear optics
,”
J. Chem. Phys.
157
,
134702
(
2022
).
12.
D. L.
Andrews
, “
The theory of double-beam three-photon absorption
,”
J. Chem. Phys.
77
,
2831
2835
(
1982
).
13.
B.
Dick
, “
Irreducible tensor analysis of sum- and difference-frequency generation in partially oriented samples
,”
Chem. Phys.
96
,
199
215
(
1985
).
14.
H. J.
Ross
,
B. S.
Sherborne
, and
G. E.
Stedman
, “
Selection rules for optical activity and linear birefringence bilinear in electric and magnetic fields
,”
J. Phys. B: At., Mol. Opt. Phys.
22
,
459
(
1989
).
15.
J.
Zyss
and
S.
Brasselet
, “
Multipolar symmetry patterns in molecular nonlinear optics
,”
J. Opt. B: Quantum Semiclassical Opt.
07
,
397
439
(
1998
).
16.
F. A. A.
Radwan
, “
Irreducible parts of elastic compliance tensor
,”
Pak. J. Appl. Sci.
1
,
270
274
(
2001
).
17.
S. N. A.
Smith
,
M. M.
Coles
, and
D. L.
Andrews
, “
Optical binding with anisotropic particles: Resolving the forces and torques
,”
Proc. SPIE
8097
,
80971E
(
2011
).
18.
T.
Bancewicz
, “
Excess hyperpolarizabilities: The irreducible tensor approach
,”
J. Math. Chem.
50
,
1570
1581
(
2012
).
19.
D. L.
Andrews
, “
Irreducible Cartesian tensor analysis of harmonic scattering from chiral fluids
,”
Symmetry
12
,
1466
(
2020
).
20.
A. J.
Stone
, “
Transformation between Cartesian and spherical tensors
,”
Mol. Phys.
29
,
1461
1471
(
1975
).
21.
J.
Jerphagnon
,
D.
Chemla
, and
R.
Bonneville
, “
The description of the physical properties of condensed matter using irreducible tensors
,”
Adv. Phys.
27
,
609
650
(
1978
).
22.
J. T.
Collins
,
K. R.
Rusimova
,
D. C.
Hooper
,
H. H.
Jeong
,
L.
Ohnoutek
,
F.
Pradaux-Caggiano
,
T.
Verbiest
,
D. R.
Carbery
,
P.
Fischer
, and
V. K.
Valev
, “
First observation of optical activity in hyper-Rayleigh scattering
,”
Phys. Rev. X
9
,
011024
(
2019
).
23.
L.
Ohnoutek
,
N. H.
Cho
,
A. W.
Allen Murphy
,
H.
Kim
,
D. M.
Răsădean
,
G. D.
Pantoş
,
K. T.
Nam
, and
V. K.
Valev
, “
Single nanoparticle chiroptics in a liquid: Optical activity in hyper-Rayleigh scattering from Au helicoids
,”
Nano Lett.
20
,
5792
5798
(
2020
).
24.
L.
Ohnoutek
,
B. J.
Olohan
,
R. R.
Jones
,
X.
Zheng
,
H.-H.
Jeong
, and
V. K.
Valev
, “
Second harmonic Rayleigh scattering optical activity of single Ag nanohelices in a liquid
,”
Nanoscale
14
,
3888
3898
(
2022
).
25.
G.
Auletta
,
M.
Fortunato
, and
G.
Parisi
,
Quantum Mechanics
(
Cambridge University Press
,
Cambridge, UK; New York
,
2009
).
26.
D. M.
Bishop
,
Group Theory and Chemistry
(
Dover
,
New York
,
2012
).
27.
D.
Ayuso
,
A. F.
Ordonez
, and
O.
Smirnova
, “
Ultrafast chirality: The road to efficient chiral measurements
,”
Phys. Chem. Chem. Phys.
24
,
26962
(
2022
).
28.
G.
Grynberg
,
A.
Aspect
, and
C.
Fabre
,
Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light
(
Cambridge University Press
,
Cambridge
,
2010
).
29.
J. W.
Haus
, “
Nanophotonic devices
,” in
Fundamentals and Applications of Nanophotonics
(
Elsevier
,
Amsterdam
,
2016
).
30.
L.
Salasnich
,
Quantum Physics of Light and Matter
(
Springer
,
Heidelberg
,
2014
).
31.
D. L.
Andrews
and
D. S.
Bradshaw
,
Introduction to Photon Science and Technology
(
SPIE Press
,
Bellingham, WA
,
2018
).
32.
D. L.
Andrews
, “
Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics
,”
Symmetry
10
,
298
(
2018
).
33.
J. F.
Ward
, “
Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory
,”
Rev. Mod. Phys.
37
,
1
18
(
1965
).
34.
R.
Wallace
, “
Diagrammatic perturbation theory of multiphoton transitions
,”
Mol. Phys.
11
,
457
470
(
1966
).
35.
D. L.
Andrews
and
D. S.
Bradshaw
, “
A photonic basis for deriving nonlinear optical response
,”
Eur. J. Phys.
30
,
239
251
(
2009
).
36.
D. S.
Bradshaw
and
D. L.
Andrews
, “
Quantum channels in nonlinear optical processes
,”
J. Nonlinear Opt. Phys. Mater.
18
,
285
299
(
2009
).
37.
D. S.
Bradshaw
,
K. A.
Forbes
, and
D. L.
Andrews
, “
Quantum field representation of photon-molecule interactions
,”
Eur. J. Phys.
41
,
025406
(
2020
).
38.
J. R.
Lalanne
,
A.
Ducasse
, and
S.
Kielich
,
Laser Molecule Interaction: Laser Physics and Molecular Nonlinear Optics
(
Wiley
,
New York
,
1996
).
39.
G. J.
Simpson
,
Nonlinear Optical Polarization Analysis in Chemistry and Biology
(
Cambridge University Press
,
2017
).
40.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions
(
Dover Publications
,
Mineola, NY
,
1998
).
41.
D. L.
Andrews
and
P.
Allcock
, “
A quantum electrodynamical foundation for molecular photonics
,” in
Modern Nonlinear Optics, Part 1
, edited by
M. W.
Evans
(
Wiley
,
New York
,
2001
), Vol. 119, pp.
603
675
.
42.
C. C.
Moore
, “
Ergodic theorem, ergodic theory, and statistical mechanics
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
1907
1911
(
2015
).
43.
D.
Marcuse
,
Principles of Quantum Electronics
(
Elsevier
,
New York
,
2012
).
44.
E. W.
Weisstein
,
CRC Concise Encyclopedia of Mathematics
(
Chapman & Hall; CRC
,
Boca Raton
,
2003
).
45.
D. L.
Andrews
and
T.
Thirunamachandran
, “
On three-dimensional rotational averages
,”
J. Chem. Phys.
67
,
5026
5033
(
1977
).
46.
H.
Jeffreys
, “
On isotropic tensors
,”
Math. Proc. Cambridge Philos. Soc.
73
,
173
176
(
1973
).
47.
H.
Weyl
,
The Classical Groups: Their Invariants and Representations
(
Princeton University Press
,
Princeton
,
1997
).
48.
E. A.
Kearsley
and
J. T.
Fong
, “
Linearly independent sets of isotropic Cartesian tensors of ranks up to eight
,”
J. Res. Natl Bur. Stand., Sect. B: Math. Sci.
79B
,
49
58
(
1975
).
49.
S. R.
Mane
, “
Irreducible Cartesian tensors of highest weight, for arbitrary order
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
813
,
62
67
(
2016
).
50.
A.
Zangwill
,
Modern Electrodynamics
(
Cambridge University Press
,
Cambridge
,
2012
), p.
787
.
51.
W.-N.
Zou
,
Q.-S.
Zheng
,
D.-X.
Du
, and
J.
Rychlewski
, “
Orthogonal irreducible decompositions of tensors of high orders
,”
Math. Mech. Solids
6
,
249
267
(
2001
).
52.
B. L.
Silver
,
Irreducible Tensor Methods: An Introduction for Chemists
(
Academic Press
,
2013
), Vol. 36.
53.
U.
Fano
and
G.
Racah
,
Irreducible Tensorial Sets
(
Academic Press
,
New York
,
1959
).
54.
R. A.
Minard
,
G. E.
Stedman
, and
A. G.
McLellan
, “
Reduction of angular momentum coupling trees and the polarization dependence of nonlinear optical processes
,”
J. Chem. Phys.
78
,
5016
5023
(
1983
).
55.
V. V.
Mikhailov
, “
Addition or arbitrary number of identical angular momenta
,”
J. Phys. A: Math. Gen.
10
,
147
153
(
1977
).
56.
P.
Atkins
,
J.
De Paula
, and
J.
Keeler
,
Atkins’ Physical Chemistry
, 12th ed. (
Oxford University Press
,
Oxford
,
2022
).
57.
D. M.
Friedrich
, “
Tensor patterns and polarization ratios for three?photon transitions in fluid media
,”
J. Chem. Phys.
75
,
3258
3268
(
1981
).
58.
S.
Brasselet
and
J.
Zyss
, “
Multipolar molecules and multipolar fields: Probing and controlling the tensorial nature of nonlinear molecular media
,”
J. Opt. B: Quantum Semiclassical Opt.
15
,
257
288
(
1998
).
59.
D. A.
Kleinman
, “
Nonlinear dielectric polarization in optical media
,”
Phys. Rev.
126
,
1977
1979
(
1962
).
60.
J.
Zyss
and
I.
Ledoux
, “
Nonlinear optics in multipolar media: Theory and experiments
,”
Chem. Rev.
94
,
77
105
(
1994
).
61.
G.
Wagnière
, “
Theoretical investigation of Kleinman symmetry in molecules
,”
Appl. Phys. B
41
,
169
172
(
1986
).
62.
A. J.
Stone
, “
Properties of Cartesian-spherical transformation coefficients
,”
J. Phys. B: At., Mol. Opt. Phys.
9
,
485
(
1976
).
63.
R.
Grinter
and
G. A.
Jones
, “
Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics
,”
Opt. Lett.
43
,
367
370
(
2018
).
64.
I. M.
Gel’fand
,
R. A.
Minlos
, and
Z. Y.
Shapiro
,
Representations of the Rotation and Lorentz Groups and Their Applications
(
Dover Publications
,
2018
).
65.
G. F.
Smith
, “
On isotropic tensors and rotation tensors of dimension m and order n
,”
Tensor
19
,
79
88
(
1968
).
66.
D. L.
Andrews
and
W. A.
Ghoul
, “
Eighth rank isotropic tensors and rotational averages
,”
J. Phys. A: Math. Gen.
14
,
1281
1290
(
1981
).
67.
T. K.
Begzjav
and
R.
Nessler
, “
On three-dimensional rotational averages of odd-rank tensors
,”
Phys. Scr.
94
,
105504
(
2019
).
68.
D. H.
Friese
,
M. T. P.
Beerepoot
, and
K.
Ruud
, “
Rotational averaging of multiphoton absorption cross sections
,”
J. Chem. Phys.
141
,
204103
(
2014
).
69.
D. L.
Andrews
and
N. P.
Blake
, “
Three-dimensional rotational averages in radiation molecule interactions: An irreducible Cartesian tensor formulation
,”
J. Phys. A: Math. Gen.
22
,
49
60
(
1989
).
70.
D. L.
Andrews
, “
The theory of double-beam three-photon absorption. II. Polarization-ratio analysis
,”
J. Chem. Phys.
78
,
1731
1734
(
1983
).
71.
V.
Galasso
, “
A theoretical study of multiphoton bound-bound electronic transitions of H2O
,”
J. Phys. B: At., Mol. Opt. Phys.
21
,
3595
(
1988
).
72.
V.
Galasso
, “
An ab initio study of multiphoton bound-bound electronic transitions of H2S
,”
J. Phys. B: At., Mol. Opt. Phys.
22
,
2241
(
1989
).
73.
V.
Galasso
, “
A theoretical study of multiphoton bound-bound electronic transitions of H2Se and H2Te
,”
J. Phys. B: At., Mol. Opt. Phys.
23
,
1853
(
1990
).
74.
W. M.
McClain
, “
Excited state symmetry assignment through polarized two-photon absorption studies of fluids
,”
J. Chem. Phys.
55
,
2789
2796
(
1971
).
75.
W. M.
McClain
, “
Polarization dependence of three-photon phenomena for randomly oriented molecules
,”
J. Chem. Phys.
57
,
2264
(
1972
).
76.
P. R.
Monson
and
W. M.
McClain
, “
Complete polarization study of the two-photon absorption of liquid 1-chloronaphthalene
,”
J. Chem. Phys.
56
,
4817
4825
(
1972
).
77.
W. M.
McClain
,
Symmetry Theory in Molecular Physics with Mathematica
(
Springer-Verlag
,
New York
,
2008
).
78.
D. L.
Andrews
and
W. A.
Ghoul
, “
Polarization studies in multiphoton absorption spectroscopy
,”
J. Chem. Phys.
75
,
530
538
(
1981
).
79.
S. S.
Dimov
,
X. K.
Hu
,
D. M.
Mao
, and
R. H.
Lipson
, “
Xe2 and Kr2 gerade state symmetries by polarization measurements
,”
Chem. Phys. Lett.
239
,
332
338
(
1995
).
80.
D. L.
Andrews
and
T.
Thirunamachandran
, “
The hyper-Raman effect: A new approach to vibrational mode classification and assignment of spectral-lines
,”
J. Chem. Phys.
68
,
2941
2951
(
1978
).
81.
C. D.
Churcher
, “
Hyper-Raman scattering in systems with electronic degeneracy
,”
Mol. Phys.
46
,
621
628
(
1982
).
82.
R.
Bersohn
,
Y. H.
Pao
, and
H. L.
Frisch
, “
Double‐quantum light scattering by molecules
,”
J. Chem. Phys.
45
,
3184
3198
(
1966
).
83.
L.
Stanton
, “
Theory of polarization phenomena in the hyper-Raman effect
,”
Mol. Phys.
23
,
601
608
(
1972
).
84.
D. L.
Andrews
and
P.
Allcock
,
Optical Harmonics in Molecular Systems
(
Wiley VCH
,
Weinheim
,
2002
).
85.
L. D.
Barron
,
L.
Hecht
,
I. H.
McColl
, and
E. W.
Blanch
, “
Raman optical activity comes of age
,”
Mol. Phys.
102
,
731
744
(
2004
).
86.
L. D.
Barron
, “
The development of biomolecular Raman optical activity spectroscopy
,”
Biomed. Spectrosc. Imaging
4
,
223
253
(
2015
).
87.
D. A.
Long
,
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
(
Wiley
,
Chichester; New York
,
2002
).
88.
M. D.
Williams
,
D. S.
Bradshaw
, and
D. L.
Andrews
, “
Raman scattering mediated by neighboring molecules
,”
J. Chem. Phys.
144
,
174304
(
2016
).
89.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
Cambridge
,
2009
).
90.
D. L.
Andrews
, “
Rayleigh and Raman optical activity: An analysis of the dependence on scattering angle
,”
J. Chem. Phys.
72
,
4141
4144
(
1980
).
91.
L.
Hecht
and
L. D.
Barron
, “
An analysis of modulation experiments for Raman optical activity
,”
Appl. Spectrosc.
44
,
483
491
(
1990
).
92.
D.
Che
and
L. A.
Nafie
, “
Isolation of Raman optical activity invariants
,”
Chem. Phys. Lett.
189
,
35
42
(
1992
).
93.
D.
Verreault
,
K.
Moreno
,
É.
Merlet
,
F.
Adamietz
,
B.
Kauffmann
,
Y.
Ferrand
,
C.
Olivier
, and
V.
Rodriguez
, “
Hyper-Rayleigh scattering as a new chiroptical method: Uncovering the nonlinear optical activity of aromatic oligoamide foldamers
,”
J. Am. Chem. Soc.
142
,
257
263
(
2020
).
94.
D. L.
Andrews
and
T.
Thirunamachandran
, “
Hyper-Raman scattering by chiral molecules
,”
J. Chem. Phys.
70
,
1027
1030
(
1979
).
95.
K. A.
Forbes
, “
Nonlinear chiral molecular photonics using twisted light: hyper-Rayleigh and hyper-Raman optical activity
,”
J. Opt.
22
,
095401
(
2020
).
96.
S. K.
Narasimhan
,
X.
Lu
, and
Y.-Y.
Luk
, “
Chiral molecules with polyhedral T, O, or I symmetry: Theoretical solution to a difficult problem in stereochemistry
,”
Chirality
20
,
878
884
(
2008
).
97.
D. L.
Andrews
, “
Symmetry and quantum features in optical vortices
,”
Symmetry
13
,
1368
(
2021
).
98.
K. A.
Forbes
and
D. L.
Andrews
, “
Orbital angular momentum of twisted light: Chirality and optical activity
,”
J. Phys. Photonics
3
,
022007
(
2021
).
99.
D. L.
Andrews
and
M. J.
Harlow
, “
Phased and Boltzmann-weighted rotational averages
,”
Phys. Rev. A
29
,
2796
2806
(
1984
).
100.
J. P.
Torres
and
L.
Torner
,
Twisted Photons: Applications of Light with Orbital Angular Momentum
(
Wiley VCH
,
Weinheim, Germany
,
2011
).
101.
D. L.
Andrews
and
M.
Babiker
,
The Angular Momentum of Light
(
Cambridge University Press
,
Cambridge, UK
,
2013
).
102.
G.
Gbur
,
Singular Optics
(
Wiley Online Library
,
2016
).
103.
J.-L.
Bégin
,
A.
Jain
,
A.
Parks
,
F.
Hufnagel
,
P.
Corkum
,
E.
Karimi
,
T.
Brabec
, and
R.
Bhardwaj
, “
Nonlinear helical dichroism in chiral and achiral molecules
,”
Nat. Photonics
17
,
82
88
(
2023
).
104.
G.
Milione
,
H. I.
Sztul
,
D. A.
Nolan
, and
R. R.
Alfano
, “
Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light
,”
Phys. Rev. Lett.
107
,
053601
(
2011
).
105.
E. J.
Galvez
,
S.
Khadka
,
W. H.
Schubert
, and
S.
Nomoto
, “
Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light
,”
Appl. Opt.
51
,
2925
2934
(
2012
).
106.
Z.-C.
Ren
,
L.-J.
Kong
,
S.-M.
Li
,
S.-X.
Qian
,
Y.
Li
,
C.
Tu
, and
H.-T.
Wang
, “
Generalized Poincaré sphere
,”
Opt. Express
23
,
26586
26595
(
2015
).
107.
D.
Naidoo
,
F. S.
Roux
,
A.
Dudley
,
I.
Litvin
,
B.
Piccirillo
,
L.
Marrucci
, and
A.
Forbes
, “
Controlled generation of higher-order Poincaré sphere beams from a laser
,”
Nat. Photonics
10
,
327
332
(
2016
).
108.
J.
Wang
,
L.
Wang
, and
Y.
Xin
, “
Generation of full Poincaré beams on arbitrary order Poincare sphere
,”
Curr.
Opt. Photonics
1
,
631
636
(
2017
).
109.
K. A.
Forbes
, “
Raman optical activity using twisted photons
,”
Phys. Rev. Lett.
122
,
103201
(
2019
).
110.
K. A.
Forbes
and
D. L.
Andrews
, “
Enhanced optical activity using the orbital angular momentum of structured light
,”
Phys. Rev. Res.
1
,
033080
(
2019
).
111.
D. L.
Andrews
, “
Quantum features of structured light
,” in
Structured Light for Optical Communication
, edited by
M. D.
Al-Amri
,
D. L.
Andrews
, and
M.
Babiker
(
Elsevier
,
Amsterdam
,
2021
), pp.
77
93
.
112.
L.
Ohnoutek
,
H. H.
Jeong
,
R. R.
Jones
,
J.
Sachs
,
B. J.
Olohan
,
D. M.
Răsădean
,
G. D.
Pantoş
,
D. L.
Andrews
,
P.
Fischer
, and
V. K.
Valev
, “
Optical activity in third‐harmonic Rayleigh scattering: A new route for measuring chirality
,”
Laser Photonics Rev.
15
,
2100235
(
2021
).
113.
L.
Ohnoutek
,
J.-Y.
Kim
,
J.
Lu
,
B. J.
Olohan
,
D. M.
Răsădean
,
G.
Dan Pantoș
,
N. A.
Kotov
, and
V. K.
Valev
, “
Third-harmonic Mie scattering from semiconductor nanohelices
,”
Nat. Photonics
16
,
126
133
(
2022
).
114.
J. L.
Greenfield
,
J.
Wade
,
J. R.
Brandt
,
X.
Shi
,
T. J.
Penfold
, and
M. J.
Fuchter
, “
Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules
,”
Chem. Sci.
12
,
8589
8602
(
2021
).
115.
A. M.
Sherman
,
N.
Takanti
,
J.
Rong
, and
G. J.
Simpson
, “
Nonlinear optical characterization of pharmaceutical formulations
,”
TrAC, Trends Anal. Chem.
140
,
116241
(
2021
).
116.
X.
Hong
,
K.
Wang
,
C.
Guan
,
X.
Han
,
Y.
Chen
,
S.
Qian
,
X.
Xing
,
C.-W.
Qiu
, and
P.
Lu
, “
Chiral third-harmonic metasurface for multiplexed holograms
,”
Nano Lett.
22
,
8860
(
2022
).
You do not currently have access to this content.