Particle-based and field-theoretic simulations are both widely used methods to predict the properties of polymeric materials. In general, the advantages of each method are complementary. Field-theoretic simulations are preferred for polymers with high molecular weights and can provide direct access to chemical potentials and free energies, which makes them the method-of-choice for calculating phase diagrams. The trade-off is that field-theoretic simulations sacrifice the molecular details present in particle-based simulations, such as the configurations of individual molecules and their dynamics. In this work, we describe a new approach to conduct “multi-representation” simulations that efficiently map between particle-based and field-theoretic simulations. Our approach involves the construction of formally equivalent particle-based and field-based models, which are then simulated subject to the constraint that their spatial density profiles are equal. This constraint provides the ability to directly link particle-based and field-based simulations and enables calculations that can switch between one representation to the other. By switching between particle/field representations during a simulation, we demonstrate that our approach can leverage many of the advantages of each representation while avoiding their respective limitations. Although our method is illustrated in the context of complex sphere phases in linear diblock copolymers, we anticipate that it will be useful whenever free energies, rapid equilibration, molecular configurations, and dynamic information are all simultaneously desired.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
London, UK
,
2002
).
2.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
3.
C.
Abrams
and
G.
Bussi
, “
Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration
,”
Entropy
16
,
163
199
(
2014
).
4.
R. C.
Bernardi
,
M. C. R.
Melo
, and
K.
Schulten
, “
Enhanced sampling techniques in molecular dynamics simulations of biological systems
,”
Biochim. Biophys. Acta, Gen. Subj.
1850
,
872
877
(
2015
).
5.
H.
Sidky
,
Y. J.
Colón
,
J.
Helfferich
,
B. J.
Sikora
,
C.
Bezik
,
W.
Chu
,
F.
Giberti
,
A. Z.
Guo
,
X.
Jiang
,
J.
Lequieu
,
J.
Li
,
J.
Moller
,
M. J.
Quevillon
,
M.
Rahimi
,
H.
Ramezani-Dakhel
,
V. S.
Rathee
,
D. R.
Reid
,
E.
Sevgen
,
V.
Thapar
,
M. A.
Webb
,
J. K.
Whitmer
, and
J. J.
de Pablo
, “
SSAGES: Software suite for advanced general ensemble simulations
,”
J. Chem. Phys.
148
,
044104
(
2018
).
6.
P. F. Z.
Rico
,
L.
Schneider
,
G.
Perez-Lemus
,
R.
Alessandri
,
S.
Dasetty
,
C. A.
Menéndez
,
Y.
Wu
,
Y.
Jin
,
T.
Nguyen
,
J.
Parker
,
A. L.
Ferguson
, and
J. J.
de Pablo
, “
PySAGES: Flexible, advanced sampling methods accelerated with GPUs
,” arXiv:2301.04835 (
2023
).
7.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R. A.
Broglia
, and
M.
Parrinello
, “
PLUMED: A portable plugin for free-energy calculations with molecular dynamics
,”
Comput. Phys. Commun.
180
,
1961
1972
(
2009
).
8.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
9.
G. H.
Fredrickson
,
V.
Ganesan
, and
F.
Drolet
, “
Field-theoretic computer simulation methods for polymers and complex fluids
,”
Macromolecules
35
,
16
39
(
2002
).
10.
G.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press
,
Oxford
,
2007
).
11.
M. W.
Matsen
, “
Field theoretic approach for block polymer melts: SCFT and FTS
,”
J. Chem. Phys.
152
,
110901
(
2020
).
12.
G. H.
Fredrickson
and
K. T.
Delaney
,
Field-Theoretic Simulations in Soft Matter and Quantum Fluids
(
Oxford University Press
,
2023
).
13.
G.
Parisi
, “
On complex probabilities
,”
Phys. Lett. B
131
,
393
395
(
1983
).
14.
J. R.
Klauder
, “
Coherent-state Langevin equations for canonical quantum systems with applications to the quantized Hall effect
,”
Phys. Rev. A
29
,
2036
2047
(
1984
).
15.
Y. O.
Popov
,
J.
Lee
, and
G. H.
Fredrickson
, “
Field-theoretic simulations of polyelectrolyte complexation
,”
J. Polym. Sci., Part B: Polym. Phys.
45
,
3223
3230
(
2007
); arXiv:cond-mat/0406218.
16.
J.
Lee
,
Y. O.
Popov
, and
G. H.
Fredrickson
, “
Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation
,”
J. Chem. Phys.
128
,
224908
(
2008
).
17.
M. C.
Villet
and
G. H.
Fredrickson
, “
Efficient field-theoretic simulation of polymer solutions
,”
J. Chem. Phys.
141
,
224115
(
2014
).
18.
G. H.
Fredrickson
and
K. T.
Delaney
, “
Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2201804119
(
2022
).
19.
K. T.
Delaney
and
G. H.
Fredrickson
, “
Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates
,”
J. Chem. Phys.
146
,
224902
(
2017
).
20.
J.
McCarty
,
K. T.
Delaney
,
S. P. O.
Danielsen
,
G. H.
Fredrickson
, and
J.-E.
Shea
, “
Complete phase diagram for liquid–liquid phase separation of intrinsically disordered proteins
,”
J. Phys. Chem. Lett.
10
,
1644
1652
(
2019
).
21.
J. G. E. M.
Fraaije
, “
Dynamic density functional theory for microphase separation kinetics of block copolymer melts
,”
J. Chem. Phys.
99
,
9202
9212
(
1993
).
22.
J. G. E. M.
Fraaije
,
B. A. C.
van Vlimmeren
,
N. M.
Maurits
,
M.
Postma
,
O. A.
Evers
,
C.
Hoffmann
,
P.
Altevogt
, and
G.
Goldbeck-Wood
, “
The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts
,”
J. Chem. Phys.
106
,
4260
4269
(
1997
).
23.
M.
Müller
and
F.
Schmid
, “
Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends
,”
Adv. Polym. Sci.
185
,
1
58
(
2005
); arXiv:cond-mat/0501076.
24.
G. H.
Fredrickson
, “
Dynamics and rheology of inhomogeneous polymeric fluids: A complex Langevin approach
,”
J. Chem. Phys.
117
,
6810
6820
(
2002
).
25.
G. H.
Fredrickson
and
H.
Orland
, “
Dynamics of polymers: A mean-field theory
,”
J. Chem. Phys.
140
,
084902
(
2014
); arXiv:1312.7518.
26.
D. J.
Grzetic
,
R. A.
Wickham
, and
A.-C.
Shi
, “
Statistical dynamics of classical systems: A self-consistent field approach
,”
J. Chem. Phys.
140
,
244907
(
2014
).
27.
M.
Müller
,
P.
Sollich
, and
D.-W.
Sun
, “
Nonequilibrium molecular conformations in polymer self-consistent field theory
,”
Macromolecules
53
,
10457
10474
(
2020
).
28.
M.
Müller
, “
Memory in the relaxation of a polymer density modulation
,”
J. Chem. Phys.
156
,
124902
(
2022
).
29.
N.
Sherck
,
K.
Shen
,
M.
Nguyen
,
B.
Yoo
,
S.
Köhler
,
J. C.
Speros
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
, “
Molecularly informed field theories from bottom-up coarse-graining
,”
ACS Macro Lett.
10
,
576
583
(
2021
).
30.
M.
Nguyen
,
N.
Sherck
,
K.
Shen
,
C. E.
Edwards
,
B.
Yoo
,
S.
Köhler
,
J. C.
Speros
,
M. E.
Helgeson
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
, “
Predicting polyelectrolyte coacervation from a molecularly informed field-theoretic model
,”
Macromolecules
55
,
9868
(
2022
).
31.
K.
Shen
,
M.
Nguyen
,
N.
Sherck
,
B.
Yoo
,
S.
Köhler
,
J.
Speros
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
, “
Predicting surfactant phase behavior with a molecularly informed field theory
,”
J. Colloid Interface Sci.
638
,
84
(
2023
).
32.
P.
Sandhu
,
J.
Zong
,
D.
Yang
, and
Q.
Wang
, “
On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation
,”
J. Chem. Phys.
138
,
194904
(
2013
).
33.
J.
He
and
Q.
Wang
, “
Frank–Kasper phases of diblock copolymer melts studied with the DPD model: SCF results
,”
Macromolecules
55
,
8931
8939
(
2022
).
34.
V.
Ganesan
and
V.
Pryamitsyn
, “
Dynamical mean-field theory for inhomogeneous polymeric systems
,”
J. Chem. Phys.
118
,
4345
4348
(
2003
).
35.
B.
Narayanan
,
V. A.
Pryamitsyn
, and
V.
Ganesan
, “
Interfacial phenomena in polymer blends: A self-consistent Brownian dynamics study
,”
Macromolecules
37
,
10180
10194
(
2004
).
36.
M.
Müller
and
G. D.
Smith
, “
Phase separation in binary mixtures containing polymers: A quantitative comparison of single-chain-in-mean-field simulations and computer simulations of the corresponding multichain systems
,”
J. Polym. Sci., Part B: Polym. Phys.
43
,
934
958
(
2005
).
37.
K. C.
Daoulas
and
M.
Müller
, “
Single chain in mean field simulations: Quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations
,”
J. Chem. Phys.
125
,
184904
(
2006
).
38.
F. A.
Detcheverry
,
D. Q.
Pike
,
U.
Nagpal
,
P. F.
Nealey
, and
J. J.
de Pablo
, “
Theoretically informed coarse grain simulations of block copolymer melts: Method and applications
,”
Soft Matter
5
,
4858
4865
(
2009
).
39.
D. Q.
Pike
,
F. A.
Detcheverry
,
M.
Müller
, and
J. J.
de Pablo
, “
Theoretically informed coarse grain simulations of polymeric systems
,”
J. Chem. Phys.
131
,
084903
(
2009
).
40.
F. A.
Detcheverry
,
D. Q.
Pike
,
P. F.
Nealey
,
M.
Müller
, and
J. J.
de Pablo
, “
Monte Carlo simulation of coarse grain polymeric systems
,”
Phys. Rev. Lett.
102
,
197801
(
2009
).
41.
H.
Chao
,
J.
Koski
, and
R. A.
Riggleman
, “
Solvent vapor annealing in block copolymer nanocomposite films: A dynamic mean field approach
,”
Soft Matter
13
,
239
249
(
2017
).
42.
J. P.
Koski
,
R. C.
Ferrier
,
N. M.
Krook
,
H.
Chao
,
R. J.
Composto
,
A. L.
Frischknecht
, and
R. A.
Riggleman
, “
Comparison of field-theoretic approaches in predicting polymer nanocomposite phase behavior
,”
Macromolecules
50
,
8797
8809
(
2017
).
43.
J. P.
Koski
,
N. M.
Krook
,
J.
Ford
,
Y.
Yahata
,
K.
Ohno
,
C. B.
Murray
,
A. L.
Frischknecht
,
R. J.
Composto
, and
R. A.
Riggleman
, “
Phase behavior of grafted polymer nanocomposites from field-based simulations
,”
Macromolecules
52
,
5110
5121
(
2019
).
44.
G.
Milano
and
T.
Kawakatsu
, “
Hybrid particle-field molecular dynamics simulations for dense polymer systems
,”
J. Chem. Phys.
130
,
214106
(
2009
).
45.
G.
Milano
and
T.
Kawakatsu
, “
Pressure calculation in hybrid particle-field simulations
,”
J. Chem. Phys.
133
,
214102
(
2010
).
46.
Y.-L.
Zhu
,
Z.-Y.
Lu
,
G.
Milano
,
A.-C.
Shi
, and
Z.-Y.
Sun
, “
Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems
,”
Phys. Chem. Chem. Phys.
18
,
9799
9808
(
2016
).
47.
T. A.
Soares
,
S.
Vanni
,
G.
Milano
, and
M.
Cascella
, “
Toward chemically resolved computer simulations of dynamics and remodeling of biological membranes
,”
J. Phys. Chem. Lett.
8
,
3586
3594
(
2017
).
48.
G.
Zhang
,
K. C.
Daoulas
, and
K.
Kremer
, “
A new coarse grained particle-to-mesh scheme for modeling soft matter
,”
Macromol. Chem. Phys.
214
,
214
224
(
2013
).
49.
L.
Schneider
and
M.
Müller
, “
Multi-architecture Monte-Carlo (MC) simulation of soft coarse-grained polymeric materials: SOft coarse grained Monte-Carlo Acceleration (SOMA)
,”
Comput. Phys. Commun.
235
,
463
476
(
2019
).
50.
L.
Leibler
, “
Theory of microphase separation in block copolymers
,”
Macromolecules
13
,
1602
1617
(
1980
).
51.
M. W.
Matsen
and
M.
Schick
, “
Stable and unstable phases of a diblock copolymer melt
,”
Phys. Rev. Lett.
72
,
2660
2663
(
1994
).
52.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
53.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
54.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
, “
HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
,”
Comput. Mater. Sci.
173
,
109363
(
2020
).
55.
K. T.
Delaney
and
G. H.
Fredrickson
, “
Recent developments in fully fluctuating field-theoretic simulations of polymer melts and solutions
,”
J. Phys. Chem. B
120
,
7615
7634
(
2016
).
56.
D.
Düchs
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
A multi-species exchange model for fully fluctuating polymer field theory simulations
,”
J. Chem. Phys.
141
,
174103
(
2014
).
57.
D. L.
Vigil
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Quantitative comparison of field-update algorithms for polymer SCFT and FTS
,”
Macromolecules
54
,
9804
9814
(
2021
).
58.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
59.
Y.-H.
Lin
,
J.
Wessén
,
T.
Pal
,
S.
Das
, and
H. S.
Chan
, “
Numerical techniques for applications of analytical theories to sequence-dependent phase separations of intrinsically disordered proteins
,” in
Phase-Separated Biomolecular Condensates: Methods and Protocols
, edited by
H.-X.
Zhou
,
J.-H.
Spille
, and
P. R.
Banerjee
(
Springer
,
New York
,
2023
), pp.
51
94
.
60.
J.-L.
Barrat
,
G. H.
Fredrickson
, and
S. W.
Sides
, “
Introducing variable cell shape methods in field theory simulations of polymers
,”
J. Phys. Chem. B
109
,
6694
6700
(
2005
).
61.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
1988
).
62.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Taylor & Francis
,
1988
).
63.
M.
Deserno
and
C.
Holm
, “
How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines
,”
J. Chem. Phys.
109
,
7678
7693
(
1998
); arXiv:cond-mat/9807099.
64.
M.
Müller
and
K. C.
Daoulas
, “
Calculating the free energy of self-assembled structures by thermodynamic integration
,”
J. Chem. Phys.
128
,
024903
(
2008
).
65.
F. C.
Frank
and
J. S.
Kasper
, “
Complex alloy structures regarded as sphere packings. I. Definitions and basic principles
,”
Acta Crystallogr.
11
,
184
190
(
1958
).
66.
K. D.
Dorfman
, “
Frank–Kasper phases in block polymers
,”
Macromolecules
54
,
10251
(
2021
).
67.
S.
Lee
,
M. J.
Bluemle
, and
F. S.
Bates
, “
Discovery of a Frank-Kasper σ-phase in sphere-forming block copolymer melts
,”
Science
330
,
349
353
(
2010
).
68.
M. W.
Bates
,
J.
Lequieu
,
S. M.
Barbon
,
R. M.
Lewis
,
K. T.
Delaney
,
A.
Anastasaki
,
C. J.
Hawker
,
G. H.
Fredrickson
, and
C. M.
Bates
, “
Stability of the A15 phase in diblock copolymer melts
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
13194
13199
(
2019
).
69.
K.
Kim
,
M. W.
Schulze
,
A.
Arora
,
R. M.
Lewis
,
M. A.
Hillmyer
,
K. D.
Dorfman
, and
F. S.
Bates
, “
Thermal processing of diblock copolymer melts mimics metallurgy
,”
Science
356
,
520
523
(
2017
).
70.
G. M.
Grason
,
B. A.
DiDonna
, and
R. D.
Kamien
, “
A geometric theory of diblock copolymer phases
,”
Phys. Rev. Lett.
91
,
058304
(
2003
); arXiv:cond-mat/0304001.
71.
N.
Xie
,
W.
Li
,
F.
Qiu
, and
A. C.
Shi
, “
σ phase formed in conformationally asymmetric AB-type block copolymers
,”
ACS Macro Lett.
3
,
909
910
(
2014
).
72.
K. T.
Delaney
and
G. H.
Fredrickson
, “
Polymer field-theory simulations on graphics processing units
,”
Comput. Phys. Commun.
184
,
2102
2110
(
2013
); arXiv:1204.5434.
73.
G. K.
Cheong
,
A.
Chawla
,
D. C.
Morse
, and
K. D.
Dorfman
, “
Open-source code for self-consistent field theory calculations of block polymer phase behavior on graphics processing units
,”
Eur. Phys. J. E
43
,
15
(
2020
).
74.
Y.
Qiang
and
W.
Li
, “
Accelerated pseudo-spectral method of self-consistent field theory via crystallographic fast Fourier transform
,”
Macromolecules
53
,
9943
9952
(
2020
).
75.
R. M.
Lewis
,
A.
Arora
,
H. K.
Beech
,
B.
Lee
,
A. P.
Lindsay
,
T. P.
Lodge
,
K. D.
Dorfman
, and
F. S.
Bates
, “
Role of chain length in the formation of Frank-Kasper phases in diblock copolymers
,”
Phys. Rev. Lett.
121
,
208002
(
2018
).
76.
K.
Kim
,
A.
Arora
,
R. M.
Lewis
,
M.
Liu
,
W.
Li
,
A.-C.
Shi
,
K. D.
Dorfman
, and
F. S.
Bates
, “
Origins of low-symmetry phases in asymmetric diblock copolymer melts
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
847
854
(
2018
).
77.
A.
Reddy
,
M. B.
Buckley
,
A.
Arora
,
F. S.
Bates
,
K. D.
Dorfman
, and
G. M.
Grason
, “
Stable Frank–Kasper phases of self-assembled, soft matter spheres
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
10233
10238
(
2018
); arXiv:1806.01726.
78.
T. M.
Gillard
,
S.
Lee
, and
F. S.
Bates
, “
Dodecagonal quasicrystalline order in a diblock copolymer melt
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
5167
5172
(
2016
).
79.
C.
Zhang
,
D. L.
Vigil
,
D.
Sun
,
M. W.
Bates
,
T.
Loman
,
E. A.
Murphy
,
S. M.
Barbon
,
J.-A.
Song
,
B.
Yu
,
G. H.
Fredrickson
,
A. K.
Whittaker
,
C. J.
Hawker
, and
C. M.
Bates
, “
Emergence of hexagonally close-packed spheres in linear block copolymer melts
,”
J. Am. Chem. Soc.
143
,
14106
14114
(
2021
).
80.
E. W.
Cochran
,
C. J.
Garcia-Cervera
, and
G. H.
Fredrickson
, “
Stability of the gyroid phase in diblock copolymers at strong segregation
,”
Macromolecules
39
,
2449
2451
(
2006
).
81.
M. W.
Matsen
, “
Effect of architecture on the phase behavior of AB-type block copolymer melts
,”
Macromolecules
45
,
2161
2165
(
2012
).
82.
R. A.
Riggleman
,
R.
Kumar
, and
G. H.
Fredrickson
, “
Investigation of the interfacial tension of complex coacervates using field-theoretic simulations
,”
J. Chem. Phys.
136
,
024903
(
2012
).
83.
J. M.
Martin
,
W.
Li
,
K. T.
Delaney
,
G. H.
Fredrickson
,
J. M.
Martin
,
W.
Li
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Statistical field theory description of inhomogeneous polarizable soft matter
,”
J. Chem. Phys.
145
,
154104
(
2016
).
84.
Y.-X.
Liu
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Field-theoretic simulations of fluctuation-stabilized aperiodic ‘bricks-and-mortar’ mesophase in miktoarm star block copolymer/homopolymer blends
,”
Macromolecules
50
,
6263
6272
(
2017
).
85.
A. E.
Levi
,
J.
Lequieu
,
J. D.
Horne
,
M. W.
Bates
,
J. M.
Ren
,
K. T.
Delaney
,
G. H.
Fredrickson
, and
C. M.
Bates
, “
Miktoarm stars via grafting-through copolymerization: Self-assembly and the star-to-bottlebrush transition
,”
Macromolecules
52
,
1794
1802
(
2019
).
86.
R. K. W.
Spencer
and
M. W.
Matsen
, “
Field-theoretic simulations of bottlebrush copolymers
,”
J. Chem. Phys.
149
,
184901
(
2018
).
87.
A.
Weyman
,
V. G.
Mavrantzas
, and
H. C.
Öttinger
, “
Field-theoretic simulations beyond δ-interactions: Overcoming the inverse potential problem in auxiliary field models
,”
J. Chem. Phys.
155
,
024106
(
2021
).
88.
A.
Weyman
,
V. G.
Mavrantzas
, and
H. C.
Öttinger
, “
Direct calculation of the functional inverse of realistic interatomic potentials in field-theoretic simulations
,”
J. Chem. Phys.
156
,
224115
(
2022
).
89.
S. P. O.
Danielsen
,
J.
McCarty
,
J.-E.
Shea
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Molecular design of self-coacervation phenomena in block polyampholytes
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
8224
8232
(
2019
).
90.
J. W.
Cooley
,
P. A. W.
Lewis
, and
P. D.
Welch
, “
The fast Fourier transform and its applications
,”
IEEE Trans. Educ.
12
,
27
34
(
1969
).
You do not currently have access to this content.