High pressure has been recognized as an important tool in molecule and materials research, and thus, it is expected to be used to understand the evolution of electronic states and geometric structures in superatoms. In this work, by studying three characteristic axial compressions on a typical endohedral metallofullerene superatom U@C28 with Td symmetry, we find that the triplet ground electronic state is preserved when the compression moves along the direction that reduces the symmetry to D2d, but the electronic state of the structure compressed along the direction of symmetry reduction to C2v or Cs is transformed into a singlet. The transition is attributed to the distinction in the response of electron spin to different axial compressions, which results in a change in the electron occupation mode of the system. Furthermore, we also confirm the gradual evolution from stereo to near-plane superatoms and the connection between their electron structures. This is reflected in the fact that the electron density distributions of the superatomic molecular orbitals (SAMOs) with extension along the restricted degrees of freedom (Dz2, Fz3 SAMOs) gradually contract, and the delocalization destruction of special orbitals is associated with this freedom. In addition, Raman and ultraviolet–visible spectra show a hyperchromic effect and redshift of characteristic peaks during axial compression, which are expected to be used for fingerprinting the superatomic planarization. Therefore, our work provides new insights based on high pressure for future research toward the discovery of physical properties and applications of superatoms.

1.
M.
Feng
,
J.
Zhao
, and
H.
Petek
, “
Atomlike, hollow-core-bound molecular orbitals of C60
,”
Science
320
,
359
(
2008
).
2.
D. E.
Bergeron
et al, “
Formation of Al13I-: Evidence for the superhalogen character of Al13
,”
Science
304
,
84
(
2004
).
3.
H.
Tanaka
et al, “
Density functional study on structure and stability of bimetallic AuNZn (N ≤ 6) clusters and their cations
,”
J. Chem. Phys.
119
,
7115
(
2003
).
4.
P.
Pyykkö
and
N.
Runeberg
, “
Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accord with the 18-electron rule
,”
Angew. Chem., Int. Ed.
41
,
2174
(
2002
).
5.
A. A.
Popov
,
S.
Yang
, and
L.
Dunsch
, “
Endohedral fullerenes
,”
Chem. Rev.
113
,
5989
(
2013
).
6.
P.
Jena
, “
Beyond the periodic table of elements: The role of superatoms
,”
J. Phys. Chem. Lett.
4
,
1432
(
2013
).
7.
S. N.
Khanna
and
P.
Jena
, “
Atomic clusters: Building blocks for a class of solids
,”
Phys. Rev. B
51
,
13705
(
1995
).
8.
A. C.
Reber
and
S. N.
Khanna
, “
Superatoms: Electronic and geometric effects on reactivity
,”
Acc. Chem. Res.
50
,
255
(
2017
).
9.
J. U.
Reveles
et al, “
Multiple valence superatoms
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
18405
(
2006
).
10.
D.
Bista
et al, “
High-spin superatom stabilized by dual subshell filling
,”
J. Am. Chem. Soc.
144
,
5172
(
2022
).
11.
X.
Li
et al, “
Magnetic properties in transition-metal-doped gold clusters: M@Au6 (M = Ti, V, Cr)
,”
Phys. Rev. Lett.
95
,
253401
(
2005
).
12.
T.
Holtzl
et al, “
The Cu7Sc cluster is a stable sigma-aromatic seven-membered ring
,”
Chemphyschem
9
,
833
(
2008
).
13.
J. U.
Reveles
et al, “
Designer magnetic superatoms
,”
Nat. Chem.
1
,
310
(
2009
).
14.
A. W.
Castleman
, “
From elements to clusters: The periodic table revisited
,”
J. Phys. Chem. Lett.
2
,
1062
(
2011
).
15.
Z.
Luo
and
A. W.
Castleman
, “
Special and general superatoms
,”
Acc. Chem. Res.
47
,
2931
(
2014
).
16.
W. D.
Knight
et al, “
Electronic shell structure and abundances of sodium clusters
,”
Phys. Rev. Lett.
52
,
2141
(
1984
).
17.
W. D.
Knight
et al, “
Electronic shell structure in potassium clusters
,”
Solid State Commun.
53
,
445
(
1985
).
18.
Z.
Liu
et al, “
Superatomic Rydberg state excitation
,”
J. Phys. Chem. Lett.
12
,
11766
(
2021
).
19.
W.
Huang
et al, “‘
Z’-Type tilted quasi-one-dimensional assembly of actinide-embedded coinage metal near-plane superatoms and their optical properties
,”
Adv. Sci.
10
,
e2206899
(
2023
).
20.
J. W.
Kang
and
H. J.
Hwang
, “
Fullerene nano ball bearings: An atomistic study
,”
Nanotechnology
15
,
614
(
2004
).
21.
D. S.
Sabirov
, “
From endohedral complexes to endohedral fullerene covalent derivatives: A density functional theory prognosis of chemical transformation of water endofullerene H2O@C60 upon its compression
,”
J. Phys. Chem. C
117
,
1178
(
2013
).
22.
Y.
Wang
et al, “
Structural evolution of D5h(1)-C90 under high pressure: A mediate allotrope of nanocarbon from zero-dimensional fullerene to one-dimensional nanotube
,”
Chin. Phys. Lett.
39
,
056101
(
2022
).
23.
R.
Wang
et al, “
Superatomic states under high pressure
,”
iScience
26
,
106281
(
2023
).
24.
P. F.
McMillan
, “
Chemistry at high pressure
,”
Chem. Soc. Rev.
35
,
855
(
2006
).
25.
Z.
Ma
et al, “
Pressure-driven reverse intersystem crossing: New path toward bright deep-blue emission of lead-free halide double perovskites
,”
J. Am. Chem. Soc.
143
,
15176
(
2021
).
26.
W.
Grochala
et al, “
The chemical imagination at work in very tight places
,”
Angew. Chem., Int. Ed.
46
,
3620
(
2007
).
27.
L.
Zhang
et al, “
Materials discovery at high pressures
,”
Nat. Rev. Mater.
2
,
17005
(
2017
).
28.
J.
Wang
et al, “
High-pressure evolution of unexpected chemical bonding and promising superconducting properties of YB6
,”
J. Phys. Chem. C
122
,
27820
(
2018
).
29.
Y.
Xi
et al, “
Superconductivity in layered van der Waals hydrogenated germanene at high pressure
,”
J. Am. Chem. Soc.
144
,
18887
(
2022
).
30.
A.
Sears
and
R. C.
Batra
, “
Buckling of multiwalled carbon nanotubes under axial compression
,”
Phys. Rev. B
73
(
2006
).
31.
M.
Yao
et al, “
Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure
,”
Phys. Rev. B
78
,
205411
(
2008
).
32.
L.
Wang
et al, “
Long-range ordered carbon clusters: A crystalline material with amorphous building blocks
,”
Science
337
,
825
(
2012
).
33.
Y.
Umeno
et al, “
Buckling-induced band-gap modulation in zigzag carbon nanotubes
,”
Phys. Rev. B
100
,
155116
(
2019
).
34.
H.
Tang
et al, “
Synthesis of paracrystalline diamond
,”
Nature
599
,
605
(
2021
).
35.
Y.
Zhang
et al, “
Negative volume compressibility in Sc3N@C80-cubane cocrystal with charge transfer
,”
J. Am. Chem. Soc.
142
,
7584
(
2020
).
36.
L.
Bao
,
P.
Peng
, and
X.
Lu
, “
Bonding inside and outside fullerene cages
,”
Acc. Chem. Res.
51
,
810
(
2018
).
37.
H.
Li
and
P. S.
Branicio
, “
Ultra-low friction of graphene/C60/graphene coatings for realistic rough surfaces
,”
Carbon
152
,
727
(
2019
).
38.
H. W.
Kroto
et al, “
C60: Buckminsterfullerene
,”
Nature
318
,
162
(
1985
).
39.
G. B.
Adams
et al, “
Jahn-Teller distortions in solid C20 and other fullerene structures
,”
Chem. Phys.
176
,
61
(
1993
).
40.
M.
Samah
and
B.
Boughiden
, “
Structures, electronic and magnetic properties of C20 fullerenes doped transition metal atoms M@C20 (M = Fe, Co, Ti, V)
,”
Int. J. Mod. Phys. C
21
,
1469
(
2011
).
41.
P. W.
Dunk
et al, “
The smallest stable fullerene, M@C28 (m = Ti, Zr, U): Stabilization and growth from carbon vapor
,”
J. Am. Chem. Soc.
134
,
9380
(
2012
).
42.
T.
Guo
et al, “
Uranium stabilization of C28: A tetravalent fullerene
,”
Science
257
,
1661
(
1992
).
43.
D.
Wang
,
W. F.
van Gunsteren
, and
Z.
Chai
, “
Recent advances in computational actinoid chemistry
,”
Chem. Soc. Rev.
41
,
5836
(
2012
).
44.
X.
Dai
et al, “
U@C28: The electronic structure induced by the 32-electron principle
,”
Phys. Chem. Chem. Phys.
17
,
23308
(
2015
).
45.
Y.
Zhao
and
D. G.
Truhlar
, “
The Mo6 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four Mo6-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
(
2007
).
46.
D.
Josa
et al, “
Analysis of the performance of DFT-D, M05-2X and M06-2X functionals for studying π⋯π interactions
,”
Chem. Phys. Lett.
557
,
170
(
2013
).
47.
T.
Risthaus
and
S.
Grimme
, “
Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes
,”
J. Chem. Theory Comput.
9
,
1580
(
2013
).
48.
P. A.
Denis
, “
Chemical reactivity of lithium-doped fullerenes
,”
J. Phys. Org. Chem.
25
,
322
(
2012
).
49.
Z.
Slanina
et al, “
Computed stabilization for a giant fullerene endohedral: Y2C2@C1(1660)-C108
,”
Chem. Phys. Lett.
710
,
147
(
2018
).
50.
X.
Cao
and
M.
Dolg
, “
Segmented contraction scheme for small-core actinide pseudopotential basis sets
,”
J. Mol. Struc. THEOCHEM
673
,
203
(
2004
).
51.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
(
1973
).
52.
M. J.
Frisch
et al,
Gaussian 09, Revision D.01
,
Gaussian, Inc.
,
Wallingford CT
,
2009
.
53.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
(
2012
).
54.
D.-e.
Jiang
and
M.
Walter
, “
Au40: A large tetrahedral magic cluster
,”
Phys. Rev. B
84
,
193402
(
2011
).
55.
S.
Kaappa
,
S.
Malola
, and
H.
Häkkinen
, “
Point group symmetry analysis of the electronic structure of bare and protected metal nanocrystals
,”
J. Phys. Chem. A
122
,
8576
(
2018
).
56.
S.-Y.
Kang
,
Z.-A.
Nan
, and
Q.-M.
Wang
, “
Superatomic orbital splitting in coinage metal nanoclusters
,”
J. Phys. Chem. Lett.
13
,
291
(
2022
).
57.
I. B.
Bersuker
, “
Modern aspects of the Jahn-Teller effect theory and applications to molecular problems
,”
Chem. Rev.
101
,
1067
(
2001
).
58.
P.
Ros
and
G. C. A.
Schuit
, “
Molecular orbital calculations on copper chloride complexes
,”
Theoret. Chim. Acta
4
,
1
(
1966
).
59.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
(
1977
).
60.
C.
Fonseca Guerra
et al, “
Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis
,”
J. Comput. Chem.
25
,
189
(
2004
).
61.
J.
Wang
et al, “
Actinide embedded nearly planar gold superatoms: Structural properties and applications in surface-enhanced Raman scattering (SERS)
,”
Phys. Chem. Chem. Phys.
20
,
27523
(
2018
).

Supplementary Material

You do not currently have access to this content.