The millimeter-wave rotational spectrum of ketene (H2C=C=O) has been collected and analyzed from 130 to 750 GHz, providing highly precise spectroscopic constants from a sextic, S-reduced Hamiltonian in the Ir representation. The chemical synthesis of deuteriated samples allowed spectroscopic measurements of five previously unstudied ketene isotopologues. Combined with previous work, these data provide a new, highly precise, and accurate semi-experimental (reSE) structure for ketene from 32 independent moments of inertia. This reSE structure was determined with the experimental rotational constants of each available isotopologue, together with computed vibration–rotation interaction and electron-mass distribution corrections from coupled-cluster calculations with single, double, and perturbative triple excitations [CCSD(T)/cc-pCVTZ]. The 2σ uncertainties of the reSE parameters are ≤0.0007 Å and 0.014° for the bond distances and angle, respectively. Only S-reduced spectroscopic constants were used in the structure determination due to a breakdown in the A-reduction of the Hamiltonian for the highly prolate ketene species. All four reSE structural parameters agree with the “best theoretical estimate” (BTE) values, which are derived from a high-level computed re structure [CCSD(T)/cc-pCV6Z] with corrections for the use of a finite basis set, the incomplete treatment of electron correlation, relativistic effects, and the diagonal Born–Oppenheimer breakdown. In each case, the computed value of the geometric parameter lies within the statistical experimental uncertainty (2σ) of the corresponding semi-experimental coordinate. The discrepancies between the BTE structure and the reSE structure are 0.0003, 0.0000, and 0.0004 Å for rC–C, rC–H, and rC–O, respectively, and 0.009° for θC–C–H.

1.
T. T.
Tidwell
,
Ketenes
,
2nd ed.
(
John Wiley & Sons
,
Hoboken, NJ
,
2006
).
2.
R. L.
Danheiser
,
Science of Synthesis: Three Carbon-Heteroatom Bonds: Ketenes and Derivatives
(
Georg Thieme Verlag, Stuttgart
,
2006
), Vol. 23.
3.
A. D.
Allen
and
T. T.
Tidwell
, “
New directions in ketene chemistry: The land of opportunity
,”
Eur. J. Org. Chem.
2012
,
1081
1096
.
4.
Y.
Zhang
,
P.
Gao
,
F.
Jiao
,
Y.
Chen
,
Y.
Ding
,
G.
Hou
,
X.
Pan
, and
X.
Bao
, “
Chemistry of ketene transformation to gasoline catalyzed by H-SAPO-11
,”
J. Am. Chem. Soc.
144
18251
18258
(
2022
).
5.
F. A.
Leibfarth
and
C. J.
Hawker
, “
The emerging utility of ketenes in polymer chemistry
,”
J. Polym. Sci., Part A: Polym. Chem.
51
,
3769
3782
(
2013
).
6.
M. J.
Newland
,
G. J.
Rea
,
L. P.
Thüner
,
A. P.
Henderson
,
B. T.
Golding
,
A. R.
Rickard
,
I.
Barnes
, and
J.
Wenger
, “
Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions
,”
Phys. Chem. Chem. Phys.
21
,
1160
(
2019
).
7.
W.
Sun
,
J.
Wang
,
C.
Huang
,
N.
Hansen
, and
B.
Yang
, “
Providing effective constraints for developing ketene combustion mechanisms: A detailed kinetic investigation of diacetyl flames
,”
Combust. Flame
205
,
11
21
(
2019
).
8.
R. L.
Hudson
and
M. J.
Loeffler
, “
Ketene formation in interstellar ices: A laboratory study
,”
Astrophys. J.
773
,
109
(
2013
).
9.
B. E.
Turner
, “
Microwave detection of interstellar ketene
,”
Astrophys. J.
213
,
L75
L79
(
1977
).
10.
H. E.
Matthews
and
T. J.
Sears
, “
Interstellar molecular line searches at 1.5 centimeters
,”
Astrophys. J.
300
,
766
772
(
1986
).
11.
L. E. B.
Johansson
,
C.
Andersson
,
J.
Ellder
,
P.
Friberg
,
A.
Hjalmarson
,
B.
Hoglund
,
W. M.
Irvine
,
H.
Olofsson
, and
G.
Rydbeck
, “
Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz
,”
Astron. Astrophys.
130
,
227
256
(
1984
).
12.
W. M.
Irvine
,
P.
Friberg
,
N.
Kaifu
,
K.
Kawaguchi
,
Y.
Kitamura
,
H. E.
Matthews
,
Y.
Minh
,
S.
Saito
,
N.
Ukita
, and
S.
Yamamoto
, “
Observations of some oxygen-containing and sulfur-containing organic molecules in cold dark clouds
,”
Astrophys. J.
342
,
871
875
(
1989
).
13.
B. E.
Turner
,
R.
Terzieva
, and
E.
Herbst
, “
The physics and chemistry of small translucent molecular clouds. XII. More complex species explainable by gas-phase processes
,”
Astrophys. J.
518
,
699
732
(
1999
).
14.
A.
Bacmann
,
V.
Taquet
,
A.
Faure
,
C.
Kahane
, and
C.
Ceccarelli
, “
Detection of complex organic molecules in a prestellar core: A new challenge for astrochemical models
,”
Astron. Astrophys.
541
,
L12
(
2012
).
15.
J. K.
Jørgensen
,
H. S. P.
Müller
,
H.
Calcutt
,
A.
Coutens
,
M. N.
Drozdovskaya
,
K. I.
Öberg
,
M. V.
Persson
,
V.
Taquet
,
E. F.
van Dishoeck
, and
S. F.
Wampfler
, “
The ALMA-PILS survey: Isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293–2422B
,”
Astron. Astrophys.
620
,
A170
(
2018
).
16.
S.
Muller
,
A.
Beelen
,
M.
Guélin
,
S.
Aalto
,
J. H.
Black
,
F.
Combes
,
S. J.
Curran
,
P.
Theule
, and
S. N.
Longmore
, “
Molecules at z = 0.89. A 4-mm-rest-frame absorption-line survey toward PKS 1830-211
,”
Astron. Astrophys.
535
,
A103
(
2011
).
17.
H.
Staudinger
,
Die Ketene
(
Enke Verlag
,
Stuttgart
,
1912
).
18.
S. C.
Wang
and
F. W.
Schueler
, “
A simple ketene generator
,”
J. Chem. Educ.
26
,
323
(
1949
).
19.
G.
Quadbeck
, “
Neuere Methoden der präparativen organischen Chemie II. Keten in der präparativen organischen Chemie
,”
Angew. Chem.
68
,
361
370
(
1956
).
20.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
R.
Fausto
, and
M.
Räsänen
, “
Photochemistry and vibrational spectroscopy of the trans and cis conformers of acetic acid in solid Ar
,”
J. Phys. Chem. A
108
,
3380
3389
(
2004
).
21.
X. K.
Zhang
,
J. M.
Parnis
,
E. G.
Lewars
, and
R. E.
March
, “
FTIR spectroscopic investigation of matrix-isolated isomerization and decomposition products of ionized acetone: Generation and characterization of 1-propen-2-ol
,”
Can. J. Chem.
75
,
276
284
(
1997
).
22.
B. J.
Esselman
and
N. J.
Hill
, “
Proper resonance depiction of Acylium cation: A high-level and student computational investigation
,”
J. Chem. Educ.
92
,
660
663
(
2015
).
23.
J.
Cernicharo
,
C.
Cabezas
,
S.
Bailleux
,
L.
Margulès
,
R.
Motiyenko
,
L.
Zou
,
Y.
Endo
,
C.
Bermúdez
,
M.
Agúndez
,
N.
Marcelino
,
B.
Lefloch
,
B.
Tercero
, and
P.
de Vicente
, “
Discovery of the acetyl cation, CH3CO+, in space and in the laboratory
,”
Astron. Astrophys.
646
,
L7
(
2021
).
24.
B.
Bak
,
E. S.
Knudsen
,
E.
Madsen
, and
J.
Rastrup-Andersen
, “
Preliminary analysis of the microwave spectrum of ketene
,”
Phys. Rev.
79
,
190
(
1950
).
25.
H. R.
Johnson
and
M. W. P.
Strandberg
, “
The microwave spectrum of ketene
,”
J. Chem. Phys.
20
,
687
695
(
1952
).
26.
A. P.
Cox
,
L. F.
Thomas
, and
J.
Sheridan
, “
Internuclear distances in keten from spectroscopic measurements
,”
Spectrochim. Acta
15
,
542
543
(
1959
).
27.
R. A.
Beaudet
, “
Problems in molecular structure and internal rotation
,” Ph.D. dissertation (
Harvard University
,
1962
).
28.
R. D.
Brown
,
P. D.
Godfrey
,
D.
McNaughton
,
A. P.
Pierlot
, and
W. H.
Taylor
, “
Microwave spectrum of ketene
,”
J. Mol. Spectrosc.
140
,
340
352
(
1990
).
29.
V. W.
Weiss
and
W. H.
Flygare
, “
Hydrogen spin−spin, spin−rotation, and deuterium nuclear quadrupole interactions in ketene, ketene‐d1, and ketene‐d2
,”
J. Chem. Phys.
45
,
3475
3476
(
1966
).
30.
L.
Nemes
and
M.
Winnewisser
, “
Centrifugal distortion analysis of the microwave and millimeter wave spectra of deuterated ketenes
,”
Z. Naturforsch., A
31
,
272
282
(
1976
).
31.
A.
Guarnieri
and
A.
Huckauf
, “
The rotational spectrum of (17O) ketene
,”
Z. Naturforsch., A: Phys. Sci.
56
,
440
446
(
2001
).
32.
A.
Guarnieri
, “
The millimeterwave spectrum of four rare ketene isotopomers
,”
Z. Naturforsch., A: Phys. Sci.
60
,
619
628
(
2005
).
33.
L.
Nemes
,
J.
Demaison
, and
G.
Wlodarczak
, “
New measurements of sub-millimetre-wave rotational transitions for the ketene (H2CCO) Molecule
,”
Acta Phys. Hung.
61
,
135
138
(
1987
).
34.
H.
Gershinowitz
and
E. B.
Wilson
, “
Infrared absorption spectrum of ketene
,”
J. Chem. Phys.
5
,
500
(
1937
).
35.
F.
Halverson
and
V. Z.
Williams
, “
The infra‐red spectrum of ketene
,”
J. Chem. Phys.
15
,
552
559
(
1947
).
36.
W. R.
Harp
and
R. S.
Rasmussen
, “
The infra‐red absorption spectrum and vibrational frequency assignment of ketene
,”
J. Chem. Phys.
15
,
778
785
(
1947
).
37.
L. G.
Drayton
and
H. W.
Thompson
, “
The infra-red spectrum of keten
,”
J. Chem. Soc.
1948
,
1416
1419
.
38.
B.
Bak
and
F. A.
Andersen
, “
The infrared spectrum of ketene
,”
J. Chem. Phys.
22
,
1050
1053
(
1954
).
39.
P. E. B.
Butler
,
D. R.
Eatcw
, and
H. W.
Thompson
, “
Vibration-rotation bands of keten
,”
Spectrochim. Acta
13
,
223
235
(
1958
).
40.
W. H.
Fletcher
and
W. F.
Arendale
, “
Infrared spectra of CD2CO and CHDCO
,”
J. Chem. Phys.
19
,
1431
1432
(
1951
).
41.
W. F.
Arendale
and
W. H.
Fletcher
, “
Some vibration‐rotation bands of ketene
,”
J. Chem. Phys.
24
,
581
587
(
1956
).
42.
W. F.
Arendale
and
W. H.
Fletcher
, “
Infrared spectra of ketene and deuteroketenes
,”
J. Chem. Phys.
26
,
793
797
(
1957
).
43.
A. P.
Cox
and
A. S.
Esbitt
, “
Fundamental vibrational frequencies in ketene and the deuteroketenes
,”
J. Chem. Phys.
38
,
1636
1643
(
1963
).
44.
L.
Nemes
, “
Multiple Coriolis perturbations in the vibrational-rotational spectra of ketene and dideuteroketene
,”
Tezisy Dokl. - Simp. Mol. Spektrosk. Vys. Sverkhvys. Razresheniya, 2nd; Akad. Nauk SSSR, Sib. Otd., Inst. Opt. Atmos.
2
(
1974
).
45.
L.
Nemes
, “
Rotation-vibration analysis of the Coriolis-coupled ν5, ν6, ν8, and ν9 bands of H2CCO
,”
J. Mol. Spectrosc.
72
,
102
123
(
1978
).
46.
F.
Winther
,
F.
Hegelund
, and
L.
Nemes
, “
The infrared spectrum of dideuteroketene below 620 cm−1
,”
J. Mol. Spectrosc.
117
,
388
402
(
1986
).
47.
J. L.
Duncan
,
A. M.
Ferguson
,
J.
Harper
,
K. H.
Tonge
, and
F.
Hegelund
, “
High-resolution infrared rovibrational studies of the A1 species fundamentals of isotopic ketenes
,”
J. Mol. Spectrosc.
122
,
72
93
(
1987
).
48.
J. L.
Duncan
and
A. M.
Ferguson
, “
High resolution infrared analyses of fundamentals and overtones in isotopic ketenes
,”
Spectrochim. Acta, Part A
43
,
1081
1086
(
1987
).
49.
F.
Hegelund
,
J.
Kauppinen
, and
F.
Winther
, “
The high resolution infrared spectrum of the ν9, ν6 and ν5 bands in ketene-d2
,”
Mol. Phys.
61
,
261
273
(
1987
).
50.
R.
Escribano
,
J. L.
Doménech
,
P.
Cancio
,
J.
Ortigoso
,
J.
Santos
, and
D.
Bermejo
, “
The ν1 band of ketene
,”
J. Chem. Phys.
101
,
937
949
(
1994
).
51.
M. C.
Campiña
,
E.
Domingo
,
M. P.
Fernández-Liencres
,
R.
Escribano
, and
L.
Nemes
, “
Analysis of the high resolution spectra of the ν5 and ν6 bands of ketene
,”
An. Quim., Int. Ed.
94
,
23
26
(
1998
)..
52.
M.
Gruebele
,
J. W. C.
Johns
, and
L.
Nemes
, “
Observation of the ν6 + ν9 band of ketene via resonant Coriolis interaction with ν8
,”
J. Mol. Spectrosc.
198
,
376
380
(
1999
).
53.
J. W. C.
Johns
,
L.
Nemes
,
K. M. T.
Yamada
,
T. Y.
Wang
,
J.
Doménech
,
J.
Santos
,
P.
Cancio
,
D.
Bermejo
,
J.
Ortigoso
, and
R.
Escribano
, “
The ground state constants of ketene
,”
J. Mol. Spectrosc.
156
,
501
503
(
1992
).
54.
L.
Nemes
,
D.
Luckhaus
,
M.
Quack
, and
J. W. C.
Johns
, “
Deperturbation of the low-frequency infrared modes of ketene (CH2CO)
,”
J. Mol. Struct.
517-518
,
217
226
(
2000
).
55.
P. D.
Mallinson
and
L.
Nemes
, “
The force field and rz structure of ketene
,”
J. Mol. Spectrosc.
59
,
470
481
(
1976
).
56.
J. L.
Duncan
and
B.
Munro
, “
The ground state average structure of ketene
,”
J. Mol. Struct.
161
,
311
319
(
1987
).
57.
A. L. L.
East
,
W. D.
Allen
, and
S. J.
Klippenstein
, “
The anharmonic force field and equilibrium molecular structure of ketene
,”
J. Chem. Phys.
102
,
8506
8532
(
1995
).
58.
A.
Guarnieri
,
J.
Demaison
, and
H. D.
Rudolph
, “
Structure of ketene—Revisited re (equilibrium) and rm (mass-dependent) structures
,”
J. Mol. Struct.
969
,
1
8
(
2010
).
59.
J. L.
Duncan
,
A. M.
Ferguson
,
J.
Harper
, and
K. H.
Tonge
, “
A combined empirical-ab initio determination of the general harmonic force field of ketene
,”
J. Mol. Spectrosc.
125
,
196
213
(
1987
).
60.
A.
Guarnieri
and
A.
Huckauf
, “
The rotational spectrum of ketene isotopomers with 18O and 13C revisited
,”
Z. Naturforsch., A: Phys. Sci.
58
,
275
279
(
2003
).
61.
C. C.
Costain
, “
Determination of molecular structures from ground state rotational constants
,”
J. Chem. Phys.
29
,
864
874
(
1958
).
62.
M. D.
Harmony
,
V. W.
Laurie
,
R. L.
Kuczkowski
,
R. H.
Schwendeman
,
D. A.
Ramsay
,
F. J.
Lovas
,
W. J.
Lafferty
, and
A. G.
Maki
, “
Molecular structures of gas‐phase polyatomic molecules determined by spectroscopic methods
,”
J. Phys. Chem. Ref. Data
8
,
619
722
(
1979
).
63.
P.
Pulay
,
W.
Meyer
, and
J. E.
Boggs
, “
Cubic force constants and equilibrium geometry of methane from Hartree–Fock and correlated wavefunctions
,”
J. Chem. Phys.
68
,
5077
5085
(
1978
).
64.
J.
Demaison
, “
Experimental, semi-experimental and ab initio equilibrium structures
,”
Mol. Phys.
105
,
3109
3138
(
2007
).
65.
J.
Vázquez
and
J. F.
Stanton
, in
Equilibrium Molecular Structures: From Spectroscopy to Quantum Chemistry
, edited by
J.
Demaison
,
J. E.
Boggs
, and
A. G.
Császár
(
Taylor & Francis Group; CRC Press
,
2010
), pp
53
87
.
66.
M.
Mendolicchio
,
E.
Penocchio
,
D.
Licari
,
N.
Tasinato
, and
V.
Barone
, “
Development and implementation of advanced fitting methods for the calculation of accurate molecular structures
,”
J. Chem. Theory Comput.
13
,
3060
3075
(
2017
).
67.
C.
Puzzarini
and
V.
Barone
, “
Diving for accurate structures in the ocean of molecular systems with the help of spectroscopy and quantum chemistry
,”
Acc. Chem. Res.
51
,
548
556
(
2018
).
68.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
69.
J. M. L.
Martin
and
P. R.
Taylor
, “
The geometry, vibrational frequencies, and total atomization energy of ethylene. A calibration study
,”
Chem. Phys. Lett.
248
,
336
344
(
1996
).
70.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
, “
The prediction of molecular equilibrium structures by the standard electronic wave functions
,”
J. Chem. Phys.
106
,
6430
6440
(
1997
).
71.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
, “
Benchmark calculations with correlated molecular wave functions. VIII. Bond energies and equilibrium geometries of the CHn and C2Hn (n=1–4) series
,”
J. Chem. Phys.
106
,
4119
4140
(
1997
).
72.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2000
).
73.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
, “
The accurate determination of molecular equilibrium structures
,”
J. Chem. Phys.
114
,
6548
6556
(
2001
).
74.
S.
Coriani
,
D.
Marchesan
,
J.
Gauss
,
C.
Hättig
,
T.
Helgaker
, and
P.
Jørgensen
, “
The accuracy of ab initio molecular geometries for systems containing second-row atoms
,”
J. Chem. Phys.
123
,
184107
(
2005
).
75.
C.
Puzzarini
, “
Accurate molecular structures of small- and medium-sized molecules
,”
Int. J. Quantum Chem.
116
,
1513
1519
(
2016
).
76.
C.
Puzzarini
and
J. F.
Stanton
, “
Connections between the accuracy of rotational constants and equilibrium molecular structures
,”
Phys. Chem. Chem. Phys.
25
,
1421
1429
(
2023
).
77.
J.
Gauss
and
J. F.
Stanton
, “
Equilibrium structure of LiCCH
,”
Int. J. Quantum Chem.
77
,
305
310
(
2000
).
78.
M.
Piccardo
,
E.
Penocchio
,
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
, “
Semi-experimental equilibrium structure determinations by employing B3LYP/SNSD anharmonic force fields: Validation and application to semirigid organic molecules
,”
J. Phys. Chem. A
119
,
2058
2082
(
2015
).
79.
Z. N.
Heim
,
B. K.
Amberger
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Molecular structure determination: Equilibrium structure of pyrimidine (m-C4H4N2) from rotational spectroscopy (reSE) and high-level ab initio calculation (re) agree within the uncertainty of experimental measurement
,”
J. Chem. Phys.
152
,
104303
(
2020
).
80.
V. L.
Orr
,
Y.
Ichikawa
,
A. R.
Patel
,
S. M.
Kougias
,
K.
Kobayashi
,
J. F.
Stanton
,
B. J.
Esselman
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure determination of thiophene (c-C4H4S) by rotational spectroscopy—Structure of a five-membered heterocycle containing a third-row atom
,”
J. Chem. Phys.
154
,
244310
(
2021
).
81.
B. J.
Esselman
,
M. A.
Zdanovskaia
,
A. N.
Owen
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure of thiazole (c-C3H3NS) from twenty-four isotopologues
,”
J. Chem. Phys.
155
,
054302
(
2021
).
82.
A. N.
Owen
,
M. A.
Zdanovskaia
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Semi-experimental equilibrium (reSE) and theoretical structures of pyridazine (o-C4H4N2)
,”
J. Phys. Chem. A
125
,
7976
7987
(
2021
).
83.
A. N.
Owen
,
N. P.
Sahoo
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Semi-experimental equilibrium (reSE) and theoretical structures of hydrazoic acid (HN3)
,”
J. Chem. Phys.
157
,
034303
(
2022
).
84.
H. A.
Bunn
,
B. J.
Esselman
,
P. R.
Franke
,
S. M.
Kougias
,
R. J.
McMahon
,
J. F.
Stanton
,
S. L.
Widicus Weaver
, and
R. C.
Woods
, “
Millimeter/Submillimeter-wave spectroscopy and the semi-experimental equilibrium (reSE) structure of 1H-1,2,4-Triazole (c-C2H3N3)
,”
J. Phys. Chem. A
126
,
8196
8210
(
2022
).
85.
M. A.
Zdanovskaia
,
B. J.
Esselman
,
S. M.
Kougias
,
B. K.
Amberger
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structures of 1H- and 2H-1,2,3-triazoles (C2H3N3) by millimeter-wave spectroscopy
,”
J. Chem. Phys.
157
,
084305
(
2022
).
86.
B. J.
Esselman
,
M. A.
Zdanovskaia
,
A. N.
Owen
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure of benzene
” (unpublished) (
2023
).
87.
B. K.
Amberger
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure determination of hydrazoic acid (HN3) by millimeter-wave Spectroscopy
,”
J. Chem. Phys.
143
,
104310
(
2015
).
88.
B. J.
Esselman
,
B. K.
Amberger
,
J. D.
Shutter
,
M. A.
Daane
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites
,”
J. Chem. Phys.
139
,
224304
(
2013
).
89.
M. A.
Zdanovskaia
,
B. J.
Esselman
,
R. C.
Woods
, and
R. J.
McMahon
, “
The 130–370 GHz rotational spectrum of phenyl isocyanide (C6H5NC)
,”
J. Chem. Phys.
151
,
024301
(
2019
).
90.
H. M.
Pickett
, “
Determination of collisional linewidths and shifts by a convolution method
,”
Appl. Opt.
19
,
2745
2749
(
1980
).
91.
Z.
Kisiel
,
L.
Pszczółkowski
,
B. J.
Drouin
,
C. S.
Brauer
,
S.
Yu
,
J. C.
Pearson
,
I. R.
Medvedev
,
S.
Fortman
, and
C.
Neese
, “
Broadband rotational spectroscopy of acrylonitrile: Vibrational energies from perturbations
,”
J. Mol. Spectrosc.
280
,
134
144
(
2012
).
92.
Z.
Kisiel
,
L.
Pszczółkowski
,
I. R.
Medvedev
,
M.
Winnewisser
,
F. C.
De Lucia
, and
E.
Herbst
, “
Rotational spectrum of trans–trans diethyl ether in the ground and three excited vibrational states
,”
J. Mol. Spectrosc.
233
,
231
243
(
2005
).
93.
H. M.
Pickett
, “
The fitting and prediction of vibration-rotation spectra with spin interactions
,”
J. Mol. Spectrosc.
148
,
371
377
(
1991
).
94.
Z.
Kisiel
, “
Assignment and analysis of complex rotational spectra
,” in
Spectroscopy from Space
, edited by
J.
Demaison
,
K.
Sarka
, and
E. A.
Cohen
,
1st ed.
(
Springer Netherlands
,
Dordrecht
,
2001
), pp
91
106
.
95.
See http://info.ifpan.edu.pl/∼kisiel/prospe.htm for PROSPE—Programs for ROtational SPEctroscopy.
96.
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O'Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
, and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package. For the current version, see http://www.cfour.de.
97.
J. F.
Stanton
,
C. L.
Lopreore
, and
J.
Gauss
, “
The equilibrium structure and fundamental vibrational frequencies of dioxirane
,”
J. Chem. Phys.
108
,
7190
7196
(
1998
).
98.
W.
Schneider
and
W.
Thiel
, “
Anharmonic force fields from analytic second derivatives: Method and application to methyl bromide
,”
Chem. Phys. Lett.
157
,
367
373
(
1989
).
99.
I. M.
Mills
, “
Vibration-rotation structure in asymmetric- and symmetric-top molecules
,” in
Molecular Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Mathews
(
Academic Press
,
New York
,
1972
), Vol. 1, pp
115
140
.
100.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
,
8131
8191
(
2019
).
101.
J. W.
Williams
and
C. D.
Hurd
, “
An improved apparatus for the laboratory preparation of ketene and butadiene
,”
J. Org. Chem.
5
,
122
125
(
1940
).
102.
P. J.
Paulsen
and
W. D.
Cooke
, “
Preparation of deuterated solvents for nuclear magnetic resonance spectrometry
,”
Anal. Chem.
35
,
1560
(
1963
).
103.
J. K. G.
Watson
, “
Determination of centrifugal distortion coefficients of asymmetric‐top molecules
,”
J. Chem. Phys.
46
,
1935
1949
(
1967
).
104.
G.
Winnewisser
, “
Millimeter wave rotational spectrum of HSSH and DSSD. II. Anomalous K doubling caused by centrifugal distortion in DSSD
,”
J. Chem. Phys.
56
,
2944
2954
(
1972
).
105.
B. P.
van Eijck
, “
Reformulation of quartic centrifugal distortion Hamiltonian
,”
J. Mol. Spectrosc.
53
,
246
249
(
1974
).
106.
V.
Typke
, “
Centrifugal distortion analysis including P6-terms
,”
J. Mol. Spectrosc.
63
,
170
179
(
1976
).
107.
L.
Margulès
,
A.
Perrin
,
J.
Demaison
,
I.
Merke
,
H.
Willner
,
M.
Rotger
, and
V.
Boudon
, “
Breakdown of the reduction of the rovibrational Hamiltonian: The case of S18O2F2
,”
J. Mol. Spectrosc.
256
,
232
237
(
2009
).
108.
R. A.
Motiyenko
,
L.
Margulès
,
E. A.
Alekseev
,
J.-C.
Guillemin
, and
J.
Demaison
, “
Centrifugal distortion analysis of the rotational spectrum of aziridine: Comparison of different Hamiltonians
,”
J. Mol. Spectrosc.
264
,
94
99
(
2010
).
109.
J.
Doose
,
A.
Guarnieri
,
W.
Neustock
,
R.
Schwarz
,
F.
Winther
, and
F.
Hegelund
, “
Application of a PC-controlled MW-spectrometer for the analysis of ketene-D2. Simultaneous analysis of vibrational excited states using microwave and infrared spectra
,”
Z. Naturforsch., A: Phys. Sci.
44
,
538
550
(
1989
).
110.
K.
Vávra
,
P.
Kania
,
J.
Koucký
,
Z.
Kisiel
, and
Š.
Urban
, “
Rotational spectra of hydrazoic acid
,”
J. Mol. Spectrosc.
337
,
27
31
(
2017
).
111.
A. G.
Császár
,
J.
Demaison
, and
H. D.
Rudolph
, “
Equilibrium structures of three-, four-, five-, six-, and seven-membered unsaturated N-containing heterocycles
,”
J. Phys. Chem. A
119
,
1731
1746
(
2015
).
112.
R. K.
Bohn
,
J. A.
Montgomery
, Jr.
,
H. H.
Michels
, and
J. A.
Fournier
, “
Second moments and rotational spectroscopy
,”
J. Mol. Spectrosc.
325
,
42
49
(
2016
).

Supplementary Material

You do not currently have access to this content.