Recent work on incorporating strong-correlation (sc) corrections into the scLH22t local hybrid functional [A. Wodyński and M. Kaupp, J. Chem. Theory Comput. 18, 6111–6123 (2022)] used a hybrid procedure, applying a strong-correlation factor derived from the reverse Becke–Roussel machinery of the KP16/B13 and B13 functionals to the nonlocal correlation term of a local hybrid functional. Here, we show that adiabatic-connection factors for strong-correlation-corrected local hybrids (scLHs) can be constructed in a simplified way based on a comparison of semi-local and exact exchange-energy densities only, without recourse to exchange-hole normalization. The simplified procedure is based on a comparative analysis of Becke’s B05 real-space treatment of nondynamical correlation and that in LHs, and it allows us to use, in principle, any semi-local exchange-energy density in the variable used to construct local adiabatic connections. The derivation of competitive scLHs is demonstrated based on either a modified Becke–Roussel or a simpler Perdew–Burke–Ernzerhof (PBE) energy density, leading to the scLH23t-mBR and scLH23t-tPBE functionals, which both exhibit low fractional spin errors while retaining good performance for weakly correlated situations. We also report preliminary attempts toward more detailed modeling of the local adiabatic connection, allowing a reduction of unphysical local maxima in spin-restricted bond-dissociation energy curves (scLH23t-mBR-P form). The simplified derivations of sc-factors reported here provide a basis for future constructions and straightforward implementation of exchange-correlation functionals that escape the zero-sum game between low self-interaction and static-correlation errors.

1.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
320
(
2012
).
2.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
3.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Fractional spins and static correlation error in density functional theory
,”
J. Chem. Phys.
129
,
121104
(
2008
).
4.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Discontinuous nature of the exchange-correlation functional in strongly correlated systems
,”
Phys. Rev. Lett.
102
,
066403
(
2009
).
5.
X. D.
Yang
,
A. H. G.
Patel
,
R. A.
Miranda-Quintana
,
F.
Heidar-Zadeh
,
C. E.
González-Espinoza
, and
P. W.
Ayers
, “
Communication: Two types of flat-planes conditions in density functional theory
,”
J. Chem. Phys.
145
,
031102
(
2016
).
6.
J.
Kirkpatrick
,
B.
McMorrow
,
D. H. P.
Turban
,
A. L.
Gaunt
,
J. S.
Spencer
,
A. G. D. G.
Matthews
,
A.
Obika
,
L.
Thiry
,
M.
Fortunato
,
D.
Pfau
,
L. R.
Castellanos
,
S.
Petersen
,
A. W. R.
Nelson
,
P.
Kohli
,
P.
Mori-Sánchez
,
D.
Hassabis
, and
A. J.
Cohen
, “
Pushing the frontiers of density functionals by solving the fractional electron problem
,”
Science
374
,
1385
1389
(
2021
).
7.
A. D.
Becke
, “
Density-functional theory vs density-functional fits: The best of both
,”
J. Chem. Phys.
157
,
234102
(
2022
).
8.
H.
Englisch
and
R.
Englisch
, “
Exact density functionals for ground-state energies. I. General results
,”
Phys. Status Solidi B
123
,
711
721
(
1984
).
9.
H.
Englisch
and
R.
Englisch
, “
Exact density functionals for ground-state energies. II. Details and remarks
,”
Phys. Status Solidi B
124
,
373
379
(
1984
).
10.
M.
Filatov
, “
Ensemble DFT approach to excited states of strongly correlated molecular systems
,” in
Density-Functional Methods for Excited States
, edited by
N.
Ferré
,
M.
Filatov
, and
M.
Huix-Rotllant
(
Springer International Publishing
,
2016
), pp.
97
124
.
11.
C.
Ullrich
and
W.
Kohn
, “
Kohn-Sham theory for ground-state ensembles
,”
Phys. Rev. Lett.
87
,
093001
(
2001
).
12.
A. D.
Becke
, “
Fractional Kohn–Sham occupancies from a strong-correlation density functional
,” in
Density Functionals: Thermochemistry
, edited by
E. R.
Johnson
(
Springer International Publishing
,
2015
), pp.
175
186
.
13.
J.-D.
Chai
, “
Density functional theory with fractional orbital occupations
,”
J. Chem. Phys.
136
,
154104
(
2012
).
14.
J.-D.
Chai
, “
Thermally-assisted-occupation density functional theory with generalized-gradient approximations
,”
J. Chem. Phys.
140
,
18A521
(
2014
).
15.
S.-H.
Yeh
,
W.
Yang
, and
C.-P.
Hsu
, “
Reformulation of thermally assisted-occupation density functional theory in the Kohn–Sham framework
,”
J. Chem. Phys.
156
,
174108
(
2022
).
16.
S.
Ghosh
,
P.
Verma
,
C. J.
Cramer
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Combining wave function methods with density functional theory for excited states
,”
Chem. Rev.
118
,
7249
7292
(
2018
).
17.
E.
Fromager
,
S.
Knecht
, and
H. J. A.
Jensen
, “
Multi-configuration time-dependent density-functional theory based on range separation
,”
J. Chem. Phys.
138
,
084101
(
2013
).
18.
L.
Gagliardi
,
D. G.
Truhlar
,
G.
Li Manni
,
R. K.
Carlson
,
C. E.
Hoyer
, and
J. L.
Bao
, “
Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems
,”
Acc. Chem. Res.
50
,
66
73
(
2017
).
19.
K.
Pernal
and
M.
Hapka
, “
Range-separated multiconfigurational density functional theory methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1566
(
2022
).
20.
A. D.
Becke
, “
Density functionals for static, dynamical, and strong correlation
,”
J. Chem. Phys.
138
,
074109
(
2013
).
21.
A. D.
Becke
, “
A real-space model of nondynamical correlation
,”
J. Chem. Phys.
119
,
2972
2977
(
2003
).
22.
A. D.
Becke
, “
Real-space post-Hartree–Fock correlation models
,”
J. Chem. Phys.
122
,
064101
(
2005
).
23.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
4298
(
1976
).
24.
D. C.
Langreth
and
J. P.
Perdew
, “
Exchange-correlation energy of a metallic surface: Wave-vector analysis
,”
Phys. Rev. B
15
,
2884
2901
(
1977
).
25.
J.
Harris
, “
Adiabatic-connection approach to Kohn-Sham theory
,”
Phys. Rev. A
29
,
1648
1659
(
1984
).
26.
A. D.
Becke
, “
Correlation energy of an inhomogeneous electron gas: A coordinate-space model
,”
J. Chem. Phys.
88
,
1053
1062
(
1988
).
27.
S.
Vuckovic
,
T. J. P.
Irons
,
A.
Savin
,
A. M.
Teale
, and
P.
Gori-Giorgi
, “
Exchange–correlation functionals via local interpolation along the adiabatic connection
,”
J. Chem. Theory Comput.
12
,
2598
2610
(
2016
).
28.
A. D.
Becke
and
M. R.
Roussel
, “
Exchange holes in inhomogeneous systems: A coordinate-space model
,”
Phys. Rev. A
39
,
3761
3767
(
1989
).
29.
A. V.
Arbuznikov
and
M.
Kaupp
, “
On the self-consistent implementation of general occupied-orbital dependent exchange-correlation functionals with application to the B05 functional
,”
J. Chem. Phys.
131
,
084103
(
2009
).
30.
E.
Proynov
,
F.
Liu
,
Y.
Shao
, and
J.
Kong
, “
Improved self-consistent and resolution-of-identity approximated Becke’05 density functional model of nondynamic electron correlation
,”
J. Chem. Phys.
136
,
034102
(
2012
).
31.
J.
Kong
and
E.
Proynov
, “
Density functional model for nondynamic and strong correlation
,”
J. Chem. Theory Comput.
12
,
133
143
(
2016
).
32.
A.
Wodyński
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
Local hybrid functionals augmented by a strong-correlation model
,”
J. Chem. Phys.
155
,
144101
(
2021
).
33.
A.
Wodyński
and
M.
Kaupp
, “
Local hybrid functional applicable to weakly and strongly correlated systems
,”
J. Chem. Theory Comput.
18
,
6111
6123
(
2022
).
34.
M.
Haasler
,
T. M.
Maier
,
R.
Grotjahn
,
S.
Gückel
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
A local hybrid functional with wide applicability and good balance between (de)localization and left-right correlation
,”
J. Chem. Theory Comput.
16
,
5645
5657
(
2020
).
35.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
36.
B. G.
Janesko
,
E.
Proynov
,
J.
Kong
,
G.
Scalmani
, and
M. J.
Frisch
, “
Practical density functionals beyond the overdelocalization–underbinding zero-sum game
,”
J. Phys. Chem. Lett.
8
,
4314
4318
(
2017
).
37.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
38.
H.
Chermette
,
I.
Ciofini
,
F.
Mariotti
, and
C.
Daul
, “
Correct dissociation behavior of radical ions such as H2+ in density functional calculations
,”
J. Chem. Phys.
114
,
1447
1453
(
2001
).
39.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
, “
The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits
,”
J. Chem. Phys.
120
,
524
539
(
2004
).
40.
A.
Ruzsinszky
,
J. P.
Perdew
, and
G. I.
Csonka
, “
Binding energy curves from nonempirical density functionals. I. Covalent bonds in closed-shell and radical molecules
,”
J. Phys. Chem. A
109
,
11006
11014
(
2005
).
41.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Many-electron self-interaction error in approximate density functionals
,”
J. Chem. Phys.
125
,
201102
(
2006
).
42.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
, “
Spurious fractional charge on dissociated atoms: Pervasive and resilient self-interaction error of common density functionals
,”
J. Chem. Phys.
125
,
194112
(
2006
).
43.
K. R.
Bryenton
,
A. A.
Adeleke
,
S. G.
Dale
, and
E. R.
Johnson
, “
Delocalization error: The greatest outstanding challenge in density-functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
13
,
e1631
(
2023
).
44.
C.
Li
,
X.
Zheng
,
N. Q.
Su
, and
W.
Yang
, “
Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations
,”
Natl. Sci. Rev.
5
,
203
215
(
2018
).
45.
E.
Proynov
and
J.
Kong
, “
Correcting the charge delocalization error of density functional theory
,”
J. Chem. Theory Comput.
17
,
4633
4638
(
2021
).
46.
J.
Kong
, “
Density functional theory for molecules of fractional charge and molecular size consistency
,” arXiv:2208.05459 (
2022
).
47.
T. M.
Maier
,
M.
Haasler
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
New approaches for the calibration of exchange-energy densities in local hybrid functionals
,”
Phys. Chem. Chem. Phys.
18
,
21133
21144
(
2016
).
48.
T. M.
Maier
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1378
(
2019
).
49.
A. D.
Becke
, “
Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing
,”
J. Chem. Phys.
104
,
1040
1046
(
1996
).
50.
A.
Patra
,
S.
Jana
,
H.
Myneni
, and
P.
Samal
, “
Laplacian free and asymptotic corrected semilocal exchange potential applied to the band gap of solids
,”
Phys. Chem. Chem. Phys.
21
,
19639
19650
(
2019
).
51.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
, “
Describing static correlation in bond dissociation by Kohn–Sham density functional theory
,”
J. Chem. Phys.
122
,
094116
(
2005
).
52.
P. A. M.
Dirac
, “
Note on exchange phenomena in the Thomas atom
,”
Math. Proc. Cambridge Philos. Soc.
26
,
376
385
(
1930
).
53.
J. C.
Slater
, “
A simplification of the Hartree-Fock method
,”
Phys. Rev.
81
,
385
390
(
1951
).
54.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
55.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
56.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
57.
A. V.
Arbuznikov
and
M.
Kaupp
, “
Importance of the correlation contribution for local hybrid functionals: Range separation and self-interaction corrections
,”
J. Chem. Phys.
136
,
014111
(
2012
).
58.
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
J. P.
Perdew
, “
Exact-exchange energy density in the gauge of a semilocal density-functional approximation
,”
Phys. Rev. A
77
,
012509
(
2008
).
59.
A. V.
Arbuznikov
and
M.
Kaupp
, “
Towards improved local hybrid functionals by calibration of exchange-energy densities
,”
J. Chem. Phys.
141
,
204101
(
2014
).
60.
TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com (9 September 2022).
61.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
,
184107
(
2020
).
62.
H.
Bahmann
and
M.
Kaupp
, “
Efficient self-consistent implementation of local hybrid functionals
,”
J. Chem. Theory Comput.
11
,
1540
1548
(
2015
).
63.
P.
Plessow
and
F.
Weigend
, “
Seminumerical calculation of the Hartree–Fock exchange matrix: Application to two-component procedures and efficient evaluation of local hybrid density functionals
,”
J. Comput. Chem.
33
,
810
816
(
2012
).
64.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
,
98
109
(
2009
).
65.
C.
Holzer
, “
An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory
,”
J. Chem. Phys.
153
,
184115
(
2020
).
66.
J. A.
Pople
,
M.
Head‐Gordon
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
, “
Gaussian-1 theory: A general procedure for prediction of molecular energies
,”
J. Chem. Phys.
90
,
5622
5629
(
1989
).
67.
L. A.
Curtiss
,
C.
Jones
,
G. W.
Trucks
,
K.
Raghavachari
, and
J. A.
Pople
, “
Gaussian-1 theory of molecular energies for second-row compounds
,”
J. Chem. Phys.
93
,
2537
2545
(
1990
).
68.
Y.
Zhao
,
N.
González-García
, and
D. G.
Truhlar
, “
Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods
,”
J. Phys. Chem. A
109
,
2012
2018
(
2005
).
69.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
, “
Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics
,”
Phys. Chem. Chem. Phys.
7
,
43
52
(
2005
).
70.
D.
Rappoport
and
F.
Furche
, “
Property-optimized Gaussian basis sets for molecular response calculations
,”
J. Chem. Phys.
133
,
134105
(
2010
).
71.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
72.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
, “
Auxiliary basis sets to approximate Coulomb potentials
,”
Chem. Phys. Lett.
240
,
283
290
(
1995
).
73.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
74.
H.-J.
Werner
,
P. J.
Knowles
,
P.
Celani
,
W.
Györffy
,
A.
Hesselmann
,
D.
Kats
,
G.
Knizia
,
A.
Köhn
,
T.
Korona
,
D.
Kreplin
,
R.
Lindh
,
Q.
Ma
,
F. R.
Manby
,
A.
Mitrushenkov
,
G.
Rauhut
,
M.
Schütz
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
J. A.
Black
,
P. J.
Bygrave
,
R.
Cimiraglia
,
D. L.
Cooper
,
D.
Coughtrie
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
K.
Doll
,
M.
Dornbach
,
F.
Eckert
,
S.
Erfort
,
E.
Goll
,
C.
Hampel
,
G.
Hetzer
,
J. G.
Hill
,
M.
Hodges
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
C.
Kollmar
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
B.
Mussard
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K. A.
Peterson
,
K.
Pflüger
,
R.
Pitzer
,
I.
Polyak
,
M.
Reiher
,
J. O.
Richardson
,
J. B.
Robinson
,
B.
Schröder
,
M.
Schwilk
,
T.
Shiozaki
,
M.
Sibaev
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
J.
Toulouse
,
M.
Wang
,
M.
Welborn
, and
B.
Ziegler
, molpro, 2022.2, a package of ab initio programs,
2022
, see https://www.molpro.net.
75.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
76.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
77.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
78.
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
H.
Neugebauer
,
S.
Spicher
,
C.
Bannwarth
, and
S.
Grimme
, “
A generally applicable atomic-charge dependent London dispersion correction
,”
J. Chem. Phys.
150
,
154122
(
2019
).
79.
S.
Fürst
,
M.
Haasler
,
R.
Grotjahn
, and
M.
Kaupp
, “
Full implementation, optimization, and evaluation of a range-separated local hybrid functional with wide accuracy for ground and excited states
,”
J. Chem. Theory Comput.
19
,
488
502
(
2023
).
80.
E.
Proynov
,
F.
Liu
, and
J.
Kong
, “
Modified Becke’05 method of nondynamic correlation in density functional theory with self-consistent implementation
,”
Chem. Phys. Lett.
525-526
,
150
152
(
2012
).
81.
P.
Verma
,
B. G.
Janesko
,
Y.
Wang
,
X.
He
,
G.
Scalmani
,
M. J.
Frisch
, and
D. G.
Truhlar
, “
M11plus: A range-separated hybrid meta functional with both local and rung-3.5 correlation terms and high across-the-board accuracy for chemical applications
,”
J. Chem. Theory Comput.
15
,
4804
4815
(
2019
).
82.
C.
Ramos
and
B. G.
Janesko
, “
Nonlocal rung-3.5 correlation from the density matrix expansion: Flat-plane condition, thermochemistry, and kinetics
,”
J. Chem. Phys.
153
,
164116
(
2020
).
83.
J. P.
Perdew
,
V. N.
Staroverov
,
J.
Tao
, and
G. E.
Scuseria
, “
Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction
,”
Phys. Rev. A
78
,
052513
(
2008
).
84.
S.
Grimme
and
A.
Hansen
, “
A practicable real-space measure and visualization of static electron-correlation effects
,”
Angew. Chem., Int. Ed.
54
,
12308
12313
(
2015
).

Supplementary Material

You do not currently have access to this content.