Three fully variational formulations of the complete-active space coupled-cluster method are derived. The formulations include the ability to approximate the model vectors by smooth manifolds, thereby opening up the possibility for overcoming the exponential wall of scaling for model spaces of complete-active space type. In particular, model vectors of matrix-product states are considered, and it is argued that the present variational formulation allows not only favorably scaling multireference coupled-cluster calculations but also systematic correction of tailored coupled-cluster calculations and of quantum chemical density-matrix renormalization group methods, which are fast and polynomial scaling but lack the ability to properly resolve dynamical correlation at chemical accuracy. The extension of the variational formulations to the time domain is also discussed, with derivations of abstract evolution equations.

1.
N.
Oliphant
and
L.
Adamowicz
, “
Multireference coupled-cluster method using a single-reference formalism
,”
J. Chem. Phys.
94
,
1229
1235
(
1991
).
2.
N.
Oliphant
and
L.
Adamowicz
, “
The implementation of the multireference coupled-cluster method based on the single-reference formalism
,”
J. Chem. Phys.
96
,
3739
3744
(
1992
).
3.
P.
Piecuch
,
N.
Oliphant
, and
L.
Adamowicz
, “
A state-selective multireference coupled- cluster theory employing the single-reference formalism
,”
J. Chem. Phys.
99
,
1875
1900
(
1993
).
4.
L. Z.
Stolarczyk
, “
Complete active space coupled-cluster method. extension of single-reference coupled-cluster method using the CASSCF wavefunction
,”
Chem. Phys. Lett.
217
,
1
6
(
1994
).
5.
D. I.
Lyakh
,
M.
Musiał
,
V. F.
Lotrich
, and
R. J.
Bartlett
, “
Multireference nature of chemistry: The coupled-cluster view
,”
Chem. Rev.
112
,
182
243
(
2012
).
6.
L.
Adamowicz
and
J. P.
Malrieu
, “
Multireference self-consistent size-extensive state-selective configuration interaction
,”
J. Chem. Phys.
105
,
9240
9247
(
1996
).
7.
L.
Adamowicz
,
J.-P.
Malrieu
, and
V. V.
Ivanov
, “
New approach to the state-specific multireference coupled-cluster formalism
,”
J. Chem. Phys.
112
,
10075
10084
(
2000
).
8.
K.
Kowalski
, “
Properties of coupled-cluster equations originating in excitation sub-algebras
,”
J. Chem. Phys.
148
,
094104
(
2018
).
9.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
4130
(
1999
).
10.
O.
Legeza
,
J.
Röder
, and
B. A.
Hess
, “
QC-DMRG study of the ionic-neutral curve crossing of LiF
,”
Mol. Phys.
101
,
2019
2028
(
2003
).
11.
G. K.-L.
Chan
,
M.
Kállay
, and
J.
Gauss
, “
State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve
,”
J. Chem. Phys.
121
,
6110
6116
(
2004
).
12.
G. K.-L.
Chan
and
T.
Van Voorhis
, “
Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes
,”
J. Chem. Phys.
122
,
204101
(
2005
).
13.
S.
Wouters
and
D.
Van Neck
, “
The density matrix renormalization group for ab initio quantum chemistry
,”
Eur. Phys. J. D
68
,
272
(
2014
).
14.
H. J.
Monkhorst
, “
Calculation of properties with the coupled-cluster method
,”
Int. J. Quantum Chem.
12
,
421
432
(
1977
).
15.
J.
Arponen
, “
Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems
,”
Ann. Phys.
151
,
311
382
(
1983
).
16.
L.
Adamowicz
,
W. D.
Laidig
, and
R. J.
Bartlett
, “
Analytical gradients for the coupled-cluster method
,”
Int. J. Quantum Chem.
26
,
245
254
(
1984
).
17.
G.
Fitzgerald
,
R. J.
Harrison
, and
R. J.
Bartlett
, “
Analytic energy gradients for general coupled-cluster methods and fourth-order many-body perturbation theory
,”
J. Chem. Phys.
85
,
5143
5150
(
1986
).
18.
T.
Helgaker
and
P.
Jørgensen
, “
Analytical calculation of geometrical derivatives in molecular electronic structure theory
,”
Adv. Quantum Chem.
19
,
183
245
(
1988
).
19.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
, “
Analytic energy derivatives in many-body methods. I. First derivatives
,”
J. Chem. Phys.
90
,
1752
1766
(
1989
).
20.
T.
Helgaker
and
P.
Jørgensen
, “
Configuration-interaction energy derivatives in a fully variational formulation
,”
Theor. Chim. Acta
75
,
111
127
(
1989
).
21.
S.
Kvaal
, “
Ab initio quantum dynamics using coupled-cluster
,”
J. Chem. Phys.
136
,
194109
(
2012
).
22.
T.
Sato
,
H.
Pathak
,
Y.
Orimo
, and
K. L.
Ishikawa
, “
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
,”
J. Chem. Phys.
148
,
051101
(
2018
).
23.
H.
Pathak
,
T.
Sato
, and
K. L.
Ishikawa
, “
Time-dependent optimized coupled-cluster method for multielectron dynamics. III. A second-order many-body perturbation approximation
,”
J. Chem. Phys.
153
,
034110
(
2020
).
24.
H.
Pathak
,
T.
Sato
, and
K. L.
Ishikawa
, “
Time-dependent optimized coupled-cluster method for multielectron dynamics. II. A coupled electron-pair approximation
,”
J. Chem. Phys.
152
,
124115
(
2020
).
25.
M. B.
Hansen
,
N. K.
Madsen
,
A.
Zoccante
, and
O.
Christiansen
, “
Time-dependent vibrational coupled cluster theory: Theory and implementation at the two-mode coupling level
,”
J. Chem. Phys.
151
,
154116
(
2019
).
26.
T. B.
Pedersen
and
S.
Kvaal
, “
Symplectic integration and physical interpretation of time-dependent coupled-cluster theory
,”
J. Chem. Phys.
150
,
144106
(
2019
).
27.
B.
Sverdrup Ofstad
,
E.
Aurbakken
,
Ø.
Sigmundson Schøyen
,
H.
Emil Kristiansen
,
S.
Kvaal
, and
T. B.
Pedersen
, “
Time-dependent coupled-cluster theory
,”
WIREs Comput. Mol. Sci.
(published online
2023
).
28.
C.
Lubich
,
I. V.
Oseledets
, and
B.
Vandereycken
, “
Time integration of tensor trains
,”
SIAM J. Numer. Anal.
53
,
917
941
(
2015
).
29.
L.-H.
Frahm
and
D.
Pfannkuche
, “
Ultrafast ab initio quantum chemistry using matrix product states
,”
J. Chem. Theory Comput.
15
,
2154
2165
(
2019
).
30.
A.
Baiardi
and
M.
Reiher
, “
Large-scale quantum dynamics with matrix product states
,”
J. Chem. Theory Comput.
15
,
3481
3498
(
2019
).
31.
T.
Bodenstein
and
S.
Kvaal
, “
A state-specific multireference coupled-cluster method based on the bivariational principle
,”
J. Chem. Phys.
153
,
024106
(
2020
).
32.
T.
Kinoshita
,
O.
Hino
, and
R. J.
Bartlett
, “
Coupled-cluster method tailored by configuration interaction
,”
J. Chem. Phys.
123
,
074106
(
2005
).
33.
L.
Veis
,
A.
Antalík
,
J.
Brabec
,
F.
Neese
,
Ö.
Legeza
, and
J.
Pittner
, “
Coupled cluster method with single and double excitations tailored by matrix product state wave functions
,”
J. Phys. Chem. Lett.
7
,
4072
4078
(
2016
).
34.
F. M.
Faulstich
,
A.
Laestadius
,
Ö.
Legeza
,
R.
Schneider
, and
S.
Kvaal
, “
Analysis of the tailored coupled-cluster method in quantum chemistry
,”
SIAM J. Numer. Anal.
57
,
2579
2607
(
2019
).
35.
F. M.
Faulstich
,
M.
Máté
,
A.
Laestadius
,
M. A.
Csirik
,
L.
Veis
,
A.
Antalik
,
J.
Brabec
,
R.
Schneider
,
J.
Pittner
,
S.
Kvaal
, and
Ö.
Legeza
, “
Numerical and theoretical aspects of the DMRG-TCC method exemplified by the nitrogen dimer
,”
J. Chem. Theory Comput.
15
,
2206
2220
(
2019
).
36.
J.
Lang
,
A.
Antalík
,
L.
Veis
,
J.
Brandejs
,
J.
Brabec
,
Ö.
Legeza
, and
J.
Pittner
, “
Near-linear scaling in DMRG-based tailored coupled clusters: An implementation of DLPNO-TCCSD and DLPNO-TCCSD(t)
,”
J. Chem. Theory Comput.
16
,
3028
3040
(
2020
).
37.
M.
Mörchen
,
L.
Freitag
, and
M.
Reiher
, “
Tailored coupled cluster theory in varying correlation regimes
,”
J. Chem. Phys.
153
,
244113
(
2020
).
38.
S.
Holtz
,
T.
Rohwedder
, and
R.
Schneider
, “
On manifolds of tensors of fixed TT-rank
,”
Numer. Math.
120
,
701
731
(
2011
).
39.
M.
Bachmayr
,
R.
Schneider
, and
A.
Uschmajew
, “
Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations
,”
Found. Comput. Math.
16
,
1423
1472
(
2016
).
40.
P. O.
Löwdin
, “
On the stability problem of a pair of adjoint operators
,”
J. Math. Phys.
24
,
70
87
(
1983
).
41.
P.
Froelich
and
P. O.
Löwdin
, “
On the Hartree–Fock scheme for a pair of adjoint operators
,”
J. Math. Phys.
24
,
88
(
1983
).
42.
S.
Holtz
,
T.
Rohwedder
, and
R.
Schneider
, “
The alternating linear scheme for tensor optimization in the tensor train format
,”
SIAM J. Sci. Comput.
34
,
A683
A713
(
2012
).
43.
C.
Lubich
,
T.
Rohwedder
,
R.
Schneider
, and
B.
Vandereycken
, “
Dynamical approximation by hierarchical Tucker ad tensor-train tensors
,”
SIAM J. Matrix Anal. Appl.
34
,
476
494
(
2015
).
44.
C.
Lubich
,
From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis
(
European Mathematical Society
,
2008
).
45.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
Deprince
, and
K.
Lopata
, “
Real-time time-dependent electronic structure theory
,”
Chem. Rev.
120
,
9951
9993
(
2020
).
46.
P. R.
Chernoff
and
J. E.
Marsden
,
Properties of Infinite Dimensional Hamiltonian Systems
(
Springer
,
1974
).
47.
P.
Kramer
and
M.
Saraceno
,
Geometry of the Time-dependent Variational Principle in Quantum Mechanics
,
Lecture Notes in Physics
(
Springer
,
1981
), Vol.
140
.
48.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
,
2nd ed.
(
Academic Press
,
London
,
1992
).
49.
K. H.
Marti
and
M.
Reiher
, “
The density matrix renormalization group algorithm in quantum chemistry
,”
Z. Phys. Chem.
224
,
583
599
(
2010
).
50.
K.
Keisuke
,
Y.
Ninota
, and
T.
Sekikawa
, “
Time-resolved high-harmonic spectroscopy of ultrafast photoisomerization dynamics
,”
Opt. Express
26
,
31039
(
2018
).
51.
J.
Zanghellini
,
M.
Kitzler
,
C.
Fabian
,
T.
Brabec
, and
A.
Scrinzi
, “
A MCTDHF approach to multi-electron dynamics in laser fields
,”
Laser Phys.
13
,
1064
1068
(
2003
).
52.
O. E.
Alon
,
A. I.
Streltsov
, and
L. S.
Cederbaum
, “
Unified view on multiconfigurational time propagation for systems consisting of identical particles
,”
J. Chem. Phys.
127
,
154103
(
2007
).
53.
H.
Miyagi
and
L. B.
Madsen
, “
Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics
,”
Phys. Rev. A
87
,
062511
(
2013
).
54.
T.
Sato
and
K. L.
Ishikawa
, “
Time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model for multielectron dynamics in intense laser fields
,”
Phys. Rev. A
91
,
023417
(
2015
).
55.
D.
Hochstuhl
,
C. M.
Hinz
, and
M.
Bonitz
, “
Time-dependent multiconfiguration methods for the numerical simulation of photoionization processes of many-electron atoms
,”
Eur. Phys. J.: Spec. Top.
223
,
177
336
(
2014
).
You do not currently have access to this content.