In the last few years, much effort has gone into developing general machine-learning potentials capable of describing interactions for a wide range of structures and phases. Yet, as attention turns to more complex materials, including alloys and disordered and heterogeneous systems, the challenge of providing reliable descriptions for all possible environments becomes ever more costly. In this work, we evaluate the benefits of using specific vs general potentials for the study of activated mechanisms in solid-state materials. More specifically, we test three machine-learning fitting approaches using the moment-tensor potential to reproduce a reference potential when exploring the energy landscape around a vacancy in Stillinger–Weber silicon crystal and silicon–germanium zincblende structures using the activation-relaxation technique nouveau (ARTn). We find that a targeted on-the-fly approach specific to and integrated into ARTn generates the highest precision on the energetics and geometry of activated barriers while remaining cost-effective. This approach expands the types of problems that can be addressed with high-accuracy ML potential.

1.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
2.
E. R.
Lindahl
, “
Molecular dynamics simulations
,” in
Molecular Modeling of Proteins
(
Springer
,
2008
), pp.
3
23
.
3.
A. F.
Voter
and
J. D.
Doll
, “
Transition state theory description of surface self-diffusion: Comparison with classical trajectory results
,”
J. Chem. Phys.
80
,
5832
5838
(
1984
).
4.
A. F.
Voter
, “
Introduction to the kinetic Monte Carlo method
,” in
Radiation Effects in Solids
(
Springer
,
2007
), pp.
1
23
.
5.
G.
Henkelman
and
H.
Jónsson
, “
Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table
,”
J. Chem. Phys.
115
,
9657
9666
(
2001
).
6.
F.
El-Mellouhi
,
N.
Mousseau
, and
L. J.
Lewis
, “
Kinetic activation–relaxation technique: An off-lattice self-learning kinetic Monte Carlo algorithm
,”
Phys. Rev. B
78
,
153202
(
2008
).
7.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
8.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
9.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
, “
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
,”
J. Comput. Phys.
285
,
316
330
(
2015
).
10.
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
1173
(
2016
).
11.
G.
Sivaraman
,
J.
Guo
,
L.
Ward
,
N.
Hoyt
,
M.
Williamson
,
I.
Foster
,
C.
Benmore
, and
N.
Jackson
, “
Automated development of molten salt machine learning potentials: Application to LiCl
,”
J. Phys. Chem. Lett.
12
,
4278
4285
(
2021
).
12.
P.-L.
Kang
,
C.
Shang
, and
Z.-P.
Liu
, “
Large-scale atomic simulation via machine learning potentials constructed by global potential energy surface exploration
,”
Acc. Chem. Res.
53
,
2119
2129
(
2020
).
13.
G.
Sivaraman
,
A. N.
Krishnamoorthy
,
M.
Baur
,
C.
Holm
,
M.
Stan
,
G.
Csányi
,
C.
Benmore
, and
Á.
Vázquez-Mayagoitia
, “
Machine-learned interatomic potentials by active learning: Amorphous and liquid hafnium dioxide
,”
npj Comput. Mater.
6
,
104
(
2020
).
14.
L. K.
Béland
,
Y.
Anahory
,
D.
Smeets
,
M.
Guihard
,
P.
Brommer
,
J.-F.
Joly
,
J.-C.
Pothier
,
L. J.
Lewis
,
N.
Mousseau
, and
F.
Schiettekatte
, “
Replenish and relax: Explaining logarithmic annealing in ion-implanted c-Si
,”
Phys. Rev. Lett.
111
,
105502
(
2013
).
15.
Y. N.
Osetsky
,
L. K.
Béland
,
A. V.
Barashev
, and
Y.
Zhang
, “
On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys
,”
Curr. Opin. Solid State Mater. Sci.
22
,
65
74
(
2018
).
16.
O. A.
Restrepo
,
N.
Mousseau
,
M.
Trochet
,
F.
El-Mellouhi
,
O.
Bouhali
, and
C. S.
Becquart
, “
Carbon diffusion paths and segregation at high-angle tilt grain boundaries in α-Fe studied by using a kinetic activation–relation technique
,”
Phys. Rev. B
97
,
054309
(
2018
).
17.
G. T.
Barkema
and
N.
Mousseau
, “
Event-based relaxation of continuous disordered systems
,”
Phys. Rev. Lett.
77
,
4358
4361
(
1996
).
18.
R.
Malek
and
N.
Mousseau
, “
Dynamics of Lennard-Jones clusters: A characterization of the activation–relaxation technique
,”
Phys. Rev. E
62
,
7723
7728
(
2000
).
19.
A.
Jay
,
M.
Gunde
,
N.
Salles
,
M.
Poberžnik
,
L.
Martin-Samos
,
N.
Richard
,
S. d.
Gironcoli
,
N.
Mousseau
, and
A.
Hémeryck
, “
Activation–relaxation technique: An efficient way to find minima and saddle points of potential energy surfaces
,”
Comput. Mater. Sci.
209
,
111363
(
2022
).
20.
D. G.
Truhlar
,
B. C.
Garrett
, and
S. J.
Klippenstein
, “
Current status of transition-state theory
,”
J. Phys. Chem.
100
,
12771
12800
(
1996
).
21.
I. S.
Novikov
,
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
The MLIP package: Moment tensor potentials with MPI and active learning
,”
Mach. Learn.: Sci. Technol.
2
,
025002
(
2020
).
22.
I. I.
Novoselov
,
A. V.
Yanilkin
,
A. V.
Shapeev
, and
E. V.
Podryabinkin
, “
Moment tensor potentials as a promising tool to study diffusion processes
,”
Comput. Mater. Sci.
164
,
46
56
(
2019
).
23.
F. H.
Stillinger
and
T. A.
Weber
, “
Computer simulation of local order in condensed phases of silicon
,”
Phys. Rev. B
31
,
5262
(
1985
).
24.
S.
Ethier
and
L. J.
Lewis
, “
Epitaxial growth of Si1–xGex on Si(100)2 × 1: A molecular-dynamics study
,”
J. Mater. Res.
7
,
2817
2827
(
1992
).
25.
Y.
Zuo
,
C.
Chen
,
X.
Li
,
Z.
Deng
,
Y.
Chen
,
J.
Behler
,
G.
Csányi
,
A. V.
Shapeev
,
A. P.
Thompson
,
M. A.
Wood
et al, “
Performance and cost assessment of machine learning interatomic potentials
,”
J. Phys. Chem. A
124
,
731
745
(
2020
).
26.
E. V.
Podryabinkin
and
A. V.
Shapeev
, “
Active learning of linearly parametrized interatomic potentials
,”
Comput. Mater. Sci.
140
,
171
180
(
2017
).
27.
E. V.
Podryabinkin
,
E. V.
Tikhonov
,
A. V.
Shapeev
, and
A. R.
Oganov
, “
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
,”
Phys. Rev. B
99
,
064114
(
2019
).
28.
K.
Gubaev
,
E. V.
Podryabinkin
,
G. L. W.
Hart
, and
A. V.
Shapeev
, “
Accelerating high-throughput searches for new alloys with active learning of interatomic potentials
,”
Comput. Mater. Sci.
156
,
148
156
(
2019
).
29.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
30.
C.
Lanczos
, “
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
,”
J. Res. Natl. Bur. Stand., Sect. B
45
,
255
(
1950
).
31.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
, “
Structural relaxation made simple
,”
Phys. Rev. Lett.
97
,
170201
(
2006
).
32.
N.
Mousseau
and
G. T.
Barkema
, “
Exploring high-dimensional energy landscapes
,”
Comput. Sci. Eng.
1
,
74
82
(
1999
).
33.
F.
El-Mellouhi
,
N.
Mousseau
, and
P.
Ordejón
, “
Sampling the diffusion paths of a neutral vacancy in silicon with quantum mechanical calculations
,”
Phys. Rev. B
70
,
205202
(
2004
).
34.
Y.
Kumeda
,
D. J.
Wales
, and
L. J.
Munro
, “
Transition states and rearrangement mechanisms from hybrid eigenvector-following and density functional theory: Application to C10H10 and defect migration in crystalline silicon
,”
Chem. Phys. Lett.
341
,
185
194
(
2001
).
35.
F.
Wooten
,
K.
Winer
, and
D.
Weaire
, “
Computer generation of structural models of amorphous Si and Ge
,”
Phys. Rev. Lett.
54
,
1392
1395
(
1985
).

Supplementary Material

You do not currently have access to this content.