In recent times, a variety of hybrid quantum–classical algorithms have been developed that aim to calculate the ground state energies of molecular systems on Noisy Intermediate-Scale Quantum (NISQ) devices. Albeit the utilization of shallow depth circuits in these algorithms, the optimization of ansatz parameters necessitates a substantial number of quantum measurements, leading to prolonged runtimes on the scantly available quantum hardware. Through our work, we lay the general foundation for an interdisciplinary approach that can be used to drastically reduce the dependency of these algorithms on quantum infrastructure. We showcase these pertinent concepts within the framework of the recently developed Projective Quantum Eigensolver (PQE) that involves iterative optimization of the nonlinearly coupled parameters through repeated residue measurements on quantum hardware. We demonstrate that one may perceive such a nonlinear optimization problem as a collective dynamic interplay of fast and slow relaxing modes. As such, the synergy among the parameters is exploited using an on-the-fly supervised machine learning protocol that dynamically casts the PQE optimization into a smaller subspace by reducing the effective degrees of freedom. We demonstrate analytically and numerically that our proposed methodology ensures a drastic reduction in the number of quantum measurements necessary for the parameter updates without compromising the characteristic accuracy. Furthermore, the machine learning model may be tuned to capture the noisy data of NISQ devices, and thus the predicted energy is shown to be resilient under a given noise model.

1.
G.
Ortiz
,
J. E.
Gubernatis
,
E.
Knill
, and
R.
Laflamme
, “
Quantum algorithms for fermionic simulations
,”
Phys. Rev. A
64
,
022319
(
2001
).
2.
D. S.
Abrams
and
S.
Lloyd
, “
Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
,”
Phys. Rev. Lett.
83
,
5162
5165
(
1999
).
3.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
, “
Simulated quantum computation of molecular energies
,”
Science
309
,
1704
1707
(
2005
).
4.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
, “
A variational eigenvalue solver on a photonic quantum processor
,”
Nat. Commun.
5
,
4213
(
2014
).
5.
E.
Farhi
,
J.
Goldstone
, and
S.
Gutmann
, “
A quantum approximate optimization algorithm
,” arXiv:1411.4028 (
2014
).
6.
M.
Motta
,
C.
Sun
,
A. T. K.
Tan
,
M. J.
O’Rourke
,
E.
Ye
,
A. J.
Minnich
,
F. G. S. L.
Brandão
, and
G. K.-L.
Chan
, “
Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution
,”
Nat. Phys.
16
,
205
210
(
2019
).
7.
J. R.
McClean
,
M. E.
Kimchi-Schwartz
,
J.
Carter
, and
W. A.
de Jong
, “
Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states
,”
Phys. Rev. A
95
,
042308
(
2017
).
8.
N. H.
Stair
,
R.
Huang
, and
F. A.
Evangelista
, “
A multireference quantum Krylov algorithm for strongly correlated electrons
,”
J. Chem. Theory Comput.
16
,
2236
2245
(
2020
).
9.
W. J.
Huggins
,
J.
Lee
,
U.
Baek
,
B.
O’Gorman
, and
K. B.
Whaley
, “
A non-orthogonal variational quantum eigensolver
,”
New J. Phys.
22
,
073009
(
2020
).
10.
R. M.
Parrish
and
P. L.
McMahon
, “
Quantum filter diagonalization: Quantum eigendecomposition without full quantum phase estimation
,” arXiv:1909.08925 (
2019
).
11.
S.-N.
Sun
,
M.
Motta
,
R. N.
Tazhigulov
,
A. T.
Tan
,
G. K.-L.
Chan
, and
A. J.
Minnich
, “
Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution
,”
PRX Quantum
2
,
010317
(
2021
).
12.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
13.
P. G.
Szalay
,
M.
Nooijen
, and
R. J.
Bartlett
, “
Alternative ansätze in single reference coupled-cluster theory. III. A critical analysis of different methods
,”
J. Chem. Phys.
103
,
281
298
(
1995
).
14.
A. G.
Taube
and
R. J.
Bartlett
, “
New perspectives on unitary coupled-cluster theory
,”
Int. J. Quantum Chem.
106
,
3393
3401
(
2006
).
15.
B.
Cooper
and
P. J.
Knowles
, “
Benchmark studies of variational, unitary and extended coupled cluster methods
,”
J. Chem. Phys.
133
,
234102
(
2010
).
16.
F. A.
Evangelista
, “
Alternative single-reference coupled cluster approaches for multireference problems: The simpler, the better
,”
J. Chem. Phys.
134
,
224102
(
2011
).
17.
G.
Harsha
,
T.
Shiozaki
, and
G. E.
Scuseria
, “
On the difference between variational and unitary coupled cluster theories
,”
J. Chem. Phys.
148
,
044107
(
2018
).
18.
M.-A.
Filip
and
A. J. W.
Thom
, “
A stochastic approach to unitary coupled cluster
,”
J. Chem. Phys.
153
,
214106
(
2020
).
19.
J.
Chen
,
H.-P.
Cheng
, and
J. K.
Freericks
, “
Quantum-inspired algorithm for the factorized form of unitary coupled cluster theory
,”
J. Chem. Theory Comput.
17
,
841
847
(
2021
).
20.
I. G.
Ryabinkin
,
T.-C.
Yen
,
S. N.
Genin
, and
A. F.
Izmaylov
, “
Qubit coupled cluster method: A systematic approach to quantum chemistry on a quantum computer
,”
J. Chem. Theory Comput.
14
,
6317
6326
(
2018
).
21.
A.
Kandala
,
A.
Mezzacapo
,
K.
Temme
,
M.
Takita
,
M.
Brink
,
J. M.
Chow
, and
J. M.
Gambetta
, “
Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
,”
Nature
549
,
242
246
(
2017
).
22.
N. H.
Stair
and
F. A.
Evangelista
, “
Simulating many-body systems with a projective quantum eigensolver
,”
PRX Quantum
2
,
030301
(
2021
).
23.
F. A.
Evangelista
,
G. K.-L.
Chan
, and
G. E.
Scuseria
, “
Exact parameterization of fermionic wave functions via unitary coupled cluster theory
,”
J. Chem. Phys.
151
,
244112
(
2019
).
24.
J.
Čížek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
4266
(
1966
).
25.
J.
Čížek
, “
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,”
Adv. Chem. Phys.
14
,
35
89
(
1969
).
26.
J.
Čížek
and
J.
Paldus
, “
Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst
,”
Int. J. Quantum Chem.
5
,
359
379
(
1971
).
27.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
28.
T. D.
Crawford
and
H. F.
Schaefer
, “
An introduction to coupled cluster theory for computational chemists
,”
Rev. Comput. Chem.
14
,
33
136
(
2000
).
29.
V.
Agarawal
,
A.
Chakraborty
, and
R.
Maitra
, “
Stability analysis of a double similarity transformed coupled cluster theory
,”
J. Chem. Phys.
153
,
084113
(
2020
).
30.
M. J.
Feigenbaum
, “
The universal metric properties of nonlinear transformations
,”
J. Stat. Phys.
21
,
669
706
(
1979
).
31.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1978
).
32.
H.
Haken
,
Synergetics: Introduction and Advanced Topics
(
Springer
,
Berlin, Heidelberg, New York
,
1976
), Vol.
202
, p.
204
.
33.
V.
Agarawal
,
S.
Roy
,
A.
Chakraborty
, and
R.
Maitra
, “
Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning
,”
J. Chem. Phys.
154
,
044110
(
2021
).
34.
V.
Agarawal
,
C.
Patra
, and
R.
Maitra
, “
An approximate coupled cluster theory via nonlinear dynamics and synergetics: The adiabatic decoupling conditions
,”
J. Chem. Phys.
155
,
124115
(
2021
).
35.
V.
Agarawal
,
S.
Roy
,
K. K.
Shrawankar
,
M.
Ghogale
,
S.
Bharathi
,
A.
Yadav
, and
R.
Maitra
, “
A hybrid coupled cluster–machine learning algorithm: Development of various regression models and benchmark applications
,”
J. Chem. Phys.
156
,
014109
(
2022
).
36.
C.
Patra
,
V.
Agarawal
,
D.
Halder
,
A.
Chakraborty
,
D.
Mondal
,
S.
Halder
, and
R.
Maitra
, “
A synergistic approach towards optimization of coupled cluster amplitudes by exploiting dynamical hierarchy
,”
ChemPhysChem
24
,
e202200633
(
2023
).
37.
K.
Kowalski
, “
Properties of coupled-cluster equations originating in excitation sub-algebras
,”
J. Chem. Phys.
148
,
094104
(
2018
).
38.
N. P.
Bauman
,
E. J.
Bylaska
,
S.
Krishnamoorthy
,
G. H.
Low
,
N.
Wiebe
,
C. E.
Granade
,
M.
Roetteler
,
M.
Troyer
, and
K.
Kowalski
, “
Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms
,”
J. Chem. Phys.
151
,
014107
(
2019
).
39.
N. P.
Bauman
,
G. H.
Low
, and
K.
Kowalski
, “
Quantum simulations of excited states with active-space downfolded Hamiltonians
,”
J. Chem. Phys.
151
,
234114
(
2019
).
40.
K.
Kowalski
and
N. P.
Bauman
, “
Sub-system quantum dynamics using coupled cluster downfolding techniques
,”
J. Chem. Phys.
152
,
244127
(
2020
).
41.
N. P.
Bauman
and
K.
Kowalski
, “
Coupled cluster downfolding theory: Towards universal many-body algorithms for dimensionality reduction of composite quantum systems in chemistry and materials science
,”
Mater. Theory
6
,
17
(
2022
).
42.
M.
Metcalf
,
N. P.
Bauman
,
K.
Kowalski
, and
W. A.
De Jong
, “
Resource-efficient chemistry on quantum computers with the variational quantum eigensolver and the double unitary coupled-cluster approach
,”
J. Chem. Theory Comput.
16
,
6165
6175
(
2020
).
43.
K.
Kowalski
, “
Dimensionality reduction of the many-body problem using coupled-cluster subsystem flow equations: Classical and quantum computing perspective
,”
Phys. Rev. A
104
,
032804
(
2021
).
44.
J.
Chládek
,
L.
Veis
,
J.
Pittner
, and
K.
Kowalski
, “
Variational quantum eigensolver for approximate diagonalization of downfolded Hamiltonians using generalized unitary coupled cluster ansatz
,”
Quantum Sci. Technol.
6
,
034008
(
2021
).
45.
N. P.
Bauman
,
B.
Peng
, and
K.
Kowalski
, “
Coupled cluster downfolding techniques: A review of existing applications in classical and quantum computing for chemical systems
,” arXiv:2303.00087 (
2023
).
46.
S. G.
Mehendale
,
B.
Peng
,
N.
Govind
, and
Y.
Alexeev
, “
Exploring parameter redundancy in the unitary coupled-cluster ansätze for hybrid variational quantum computing
,”
J. Phys. Chem. A
127
,
4526
4537
(
2023
).
47.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
,
S.
Sim
,
L.
Veis
, and
A.
Aspuru-Guzik
, “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
,
10856
10915
(
2019
).
48.
H.
Haken
, “
Nonlinear equations. The slaving principle
,” in
Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices
(
Springer
,
Berlin, Heidelberg
,
1983
), pp.
187
221
.
49.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2018
).
50.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
, “
Two-dimensional maps
,” in
Chaos: An Introduction to Dynamical Systems
(
Springer New York
,
1996
), Vols.
43–104
.
51.
S. G.
Eubank
and
D. J.
Farmer
, “
Introduction to dynamical systems
,” in
Introduction to Nonlinear Physics
(
Springer Verlag
,
1997
), pp.
55
175
.
52.
H.
Haken
, “
Discrete dynamics of complex systems
,”
Discrete Dyn. Nat. Soc.
1
,
269818
(
1997
).
53.
H.
Haken
and
A.
Wunderlin
, “
Slaving principle for stochastic differential equations with additive and multiplicative noise and for discrete noisy maps
,”
Z. Phys. B: Condens. Matter
47
,
179
187
(
1982
).
54.
A.
Wunderlin
and
H.
Haken
, “
Generalized Ginzburg-Landau equations, slaving principle and center manifold theorem
,”
Z. Phys. B: Condens. Matter
44
,
135
141
(
1981
).
55.
H.
Haken
, “
Self-organization
,” in
Synergetics
(
Springer-Verleg
,
Heidelberg
,
1977
), Chap. VII.
56.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
57.
S.
Sim
,
P. D.
Johnson
, and
A.
Aspuru‐Guzik
, “
Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms
,”
Adv. Quantum Technol.
2
,
1900070
(
2019
).
58.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
et al, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
59.
H.
Abraham
et al (
2021
), “
Qiskit: An open-source framework for quantum computing
,” Zenodo. https://doi.org/10.5281/zenodo.2562111

Supplementary Material

You do not currently have access to this content.