The line tension of two immiscible liquids under two-dimensional and quasi-two dimensional conditions is calculated as a function of temperature, using mesoscale numerical simulations, finding that it decays linearly. The liquid–liquid correlation length, defined as the thickness of their interface, is also predicted as the temperature is varied, and it diverges as the temperature becomes close to the critical temperature. These results are compared with recent experiments on lipid membranes and good agreement is obtained. The scaling exponents of the line tension (μ) and the spatial correlation length (ν) with temperature are extracted, finding that they fulfill the hyperscaling relationship, μ=d1ν, where d is the dimension. The scaling of specific heat with temperature of the binary mixture is obtained as well. This is the first report of the successful test of the hyperscaling relation between μ and ν for d = 2 and for the non-trivial case of quasi-two dimensions. This work can help to understand experiments that test properties of nanomaterials using simple scaling laws, without needing to know specific chemical details of those materials.

1.
L. P.
Kadanoff
,
Statistical Physics
(
World Scientific
,
2000
), Vol.
54
.
2.
V. M.
Kaganer
,
H.
Möhwald
, and
P.
Dutta
,
Rev. Mod. Phys.
71
,
779
819
(
1999
).
3.
J.
Santana-Solano
,
A.
Ramírez-Saito
, and
J. L.
Arauz-Lara
,
Phys. Rev. Lett.
95
,
198301
(
2005
).
4.
C.
Klopp
and
A.
Eremin
,
Langmuir
36
,
10615
10621
(
2020
).
5.
J.-P.
Korb
,
B.
Nicot
,
A.
Louis-Joseph
,
S.
Bubici
, and
G.
Ferrante
,
J. Phys. Chem. C
118
,
23212
23218
(
2014
).
6.
J. M.
Kosterlitz
and
D. J.
Thouless
,
J. Phys. C: Solid State Phys.
6
,
1181
1203
(
1973
).
7.
A. N.
Semenov
and
A.
Johner
,
Eur. Phys. J. E
12
,
469
480
(
2003
).
8.
M. E.
Fisher
, “
The theory of equilibrium critical phenomena
,”
Rep. Prog. Phys.
31
,
418
(
1968
).
9.
K.
Huang
,
Introduction to Statistical Physics
(
Chapman and Hall/CRC
,
2009
).
10.
J.
Cardy
,
Scaling and Renormalization in Statistical Physics
(
Cambridge University Press
,
Cambridge, UK
,
1996
).
11.
L. P.
Kadanoff
,
Phys. Phys. Fiz.
2
,
263
272
(
1966
).
12.
E.
Granato
,
M.
Greb
,
K. R.
Elder
,
S. C.
Ying
, and
T.
Ala-Nissila
,
Phys. Rev. B
105
,
L201409
(
2022
).
13.
B.
Widom
,
J. Chem. Phys.
43
,
3892
3897
(
1965
).
14.
A. O.
Parry
and
R.
Evans
,
Phys. Rev. A
46
,
5282
5283
(
1992
).
15.
N.
Goldenfeld
,
Lectures on Phase Transitions and the Renormalization Group
(
CRC Press
,
2018
).
16.
K.
Binder
,
Phys. Rev. A
25
,
1699
1709
(
1982
).
17.
M. R.
Moldover
,
Phys. Rev. A
31
,
1022
1033
(
1985
).
18.
A. M.
Ferrenberg
and
D. P.
Landau
,
Phys. Rev. B
44
,
5081
5091
(
1991
).
19.
S.
Klessinger
and
G.
Münster
,
Nucl. Phys. B
386
,
701
713
(
1992
).
20.
E.
Mayoral
and
A.
Gama Goicochea
,
Soft Matter
10
,
9054
9058
(
2014
).
21.
B. J.
Alder
and
T. E.
Wainwright
,
Phys. Rev.
127
,
359
361
(
1962
).
22.
M.
Santra
,
S.
Chakrabarty
, and
B.
Bagchi
,
J. Chem. Phys.
129
,
234704
(
2008
).
23.
Y.
Liu
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Chem. Phys.
132
,
144107
(
2010
).
24.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
New York
,
1987
).
25.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
160
(
1992
).
26.
J. M. V. A.
Koelman
and
P. J.
Hoogerbrugge
,
Europhys. Lett.
21
,
363
368
(
1993
).
27.
N. A.
Spenley
,
Europhys. Lett.
49
,
534
540
(
2000
).
28.
A.
Gama Goicochea
,
Communications in Computer and Information Science
(
Springer Verlag
,
2017
), Vol.
697
, pp.
289
313
.
29.
A. R.
Honerkamp-Smith
,
P.
Cicuta
,
M. D.
Collins
,
S. L.
Veatch
,
M.
den Nijs
,
M.
Schick
, and
S. L.
Keller
,
Biophys. J.
95
,
236
246
(
2008
).
30.
P.
Español
and
P.
Warren
,
Europhys. Lett.
30
,
191
196
(
1995
).
31.
A.
Gama Goicochea
,
Langmuir
23
,
11656
11663
(
2007
).
32.
F.
Alarcón
,
E.
Pérez
, and
A.
Gama Goicochea
,
Soft Matter
9
,
3777
3788
(
2013
).
33.
D. G.
Kinniburgh
,
Environ. Sci. Technol.
20
,
895
904
(
1986
).
34.
Z.
Li
,
X.
Bian
,
Y.-H.
Tang
, and
G. E.
Karniadakis
,
J. Comput. Phys.
355
,
534
547
(
2018
).
35.
C.
Pastorino
and
A.
Gama Goicochea
,
Environmental Science and Engineering
(
Springer Berlin Heidelberg
,
2015
), pp.
51
79
.
36.
K. A.
Terrón-Mejía
,
R.
López-Rendón
, and
A.
Gama Goicochea
,
Phys. Chem. Chem. Phys.
17
,
26403
26416
(
2015
).
37.
J. D.
Hernández Velázquez
,
S.
Mejía-Rosales
, and
A.
Gama Goicochea
,
Polymer
129
,
44
56
(
2017
).
38.
J. S.
Hernández-Fragoso
,
S. D. J.
Alas
, and
A.
Gama Goicochea
,
ACS Appl. Polym. Mater.
2
,
5006
5013
(
2020
).
39.
I.
Vattulainen
,
M.
Karttunen
,
G.
Besold
, and
J. M.
Polson
,
J. Chem. Phys.
116
,
3967
3979
(
2002
).
40.
J. M.
Pusterla
,
S. A.
Cannas
,
E.
Schneck
, and
R. G.
Oliveira
,
Biochim. Biophys. Acta, Biomembr.
1864
,
183874
(
2022
).
41.
A. R.
Honerkamp-Smith
,
S. L.
Veatch
, and
S. L.
Keller
,
Biochim. Biophys. Acta, Biomembr.
1788
,
53
63
(
2009
).
42.
J. H.
Irving
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
817
829
(
1950
).
43.
Y.
Reyes
,
M.
Bárcenas
,
G.
Odriozola
, and
P.
Orea
,
J. Chem. Phys.
145
,
174505
(
2016
).
44.
Z.
Merdan
,
M.
Bayirli
, and
M. K.
Ozturk
,
Z. Naturforsch., A
64
,
849
854
(
2009
).
45.
M. A.
Velázquez
et al,
J. Chem. Phys.
124
,
084104
(
2006
).
You do not currently have access to this content.