Time-resolved spectroscopy is commonly used to study diverse phenomena in chemistry, biology, and physics. Pump–probe experiments and coherent two-dimensional (2D) spectroscopy have resolved site-to-site energy transfer, visualized electronic couplings, and much more. In both techniques, the lowest-order signal, in a perturbative expansion of the polarization, is of third order in the electric field, which we call a one-quantum (1Q) signal because in 2D spectroscopy it oscillates in the coherence time with the excitation frequency. There is also a two-quantum (2Q) signal that oscillates in the coherence time at twice the fundamental frequency and is fifth order in the electric field. We demonstrate that the appearance of the 2Q signal guarantees that the 1Q signal is contaminated by non-negligible fifth-order interactions. We derive an analytical connection between an nQ signal and (2n + 1)th-order contaminations of an rQ (with r < n) signal by studying Feynman diagrams of all contributions. We demonstrate that by performing partial integrations along the excitation axis in 2D spectra, we can obtain clean rQ signals free of higher-order artifacts. We exemplify the technique using optical 2D spectroscopy on squaraine oligomers, showing clean extraction of the third-order signal. We further demonstrate the analytical connection with higher-order pump–probe spectroscopy and compare both techniques experimentally. Our approach demonstrates the full power of higher-order pump–probe and 2D spectroscopy to investigate multi-particle interactions in coupled systems.

1.
I. H. M.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
,
Biochim. Biophys. Acta, Bioenerg.
1657
,
82
(
2004
).
2.
R.
Berera
,
R.
van Grondelle
, and
J. T. M.
Kennis
,
Photosynth. Res.
101
,
105
(
2009
).
3.
J.
Dostál
,
J.
Pšenčík
, and
D.
Zigmantas
,
Nat. Chem.
8
,
705
(
2016
).
4.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
,
625
(
2005
).
5.
Y.
Song
,
R.
Sechrist
,
H. H.
Nguyen
,
W.
Johnson
,
D.
Abramavicius
,
K. E.
Redding
, and
J. P.
Ogilvie
,
Nat. Commun.
12
,
2801
(
2021
).
6.
E.
Collini
,
H.
Gattuso
,
Y.
Kolodny
,
L.
Bolzonello
,
A.
Volpato
,
H. T.
Fridman
,
S.
Yochelis
,
M.
Mor
,
J.
Dehnel
,
E.
Lifshitz
,
Y.
Paltiel
,
R. D.
Levine
, and
F.
Remacle
,
J. Phys. Chem. C
124
,
16222
(
2020
).
7.
J. R.
Caram
,
H.
Zheng
,
P. D.
Dahlberg
,
B. S.
Rolczynski
,
G. B.
Griffin
,
A. F.
Fidler
,
D. S.
Dolzhnikov
,
D. V.
Talapin
, and
G. S.
Engel
,
J. Phys. Chem. Lett.
5
,
196
(
2014
).
8.
J.
Lim
,
D.
Paleček
,
F.
Caycedo-Soler
,
C. N.
Lincoln
,
J.
Prior
,
H.
von Berlepsch
,
S. F.
Huelga
,
M. B.
Plenio
,
D.
Zigmantas
, and
J.
Hauer
,
Nat. Commun.
6
,
7755
(
2015
).
9.
B.
Kriete
,
A. S.
Bondarenko
,
R.
Alessandri
,
I.
Patmanidis
,
V. V.
Krasnikov
,
T. L. C.
Jansen
,
S. J.
Marrink
,
J.
Knoester
, and
M. S.
Pshenichnikov
,
J. Am. Chem. Soc.
142
,
18073
(
2020
).
10.
D.
Heussman
,
J.
Kittell
,
P. H.
von Hippel
, and
A. H.
Marcus
,
J. Chem. Phys.
156
,
045101
(
2022
).
11.
R. D.
Mehlenbacher
,
J.
Wang
,
N. M.
Kearns
,
M. J.
Shea
,
J. T.
Flach
,
T. J.
McDonough
,
M.-Y.
Wu
,
M. S.
Arnold
, and
M. T.
Zanni
,
J. Phys. Chem. Lett.
7
,
2024
(
2016
).
12.
V. R.
Policht
,
M.
Russo
,
F.
Liu
,
C.
Trovatello
,
M.
Maiuri
,
Y.
Bai
,
X.
Zhu
,
S.
Dal Conte
, and
G.
Cerullo
,
Nano Lett.
21
,
4738
(
2021
).
13.
D.
Li
,
C.
Trovatello
,
S.
Dal Conte
,
M.
Nuß
,
G.
Soavi
,
G.
Wang
,
A. C.
Ferrari
,
G.
Cerullo
, and
T.
Brixner
,
Nat. Commun.
12
,
954
(
2021
).
14.
P.
Akhtar
,
C.
Zhang
,
T. N.
Do
,
G.
Garab
,
P. H.
Lambrev
, and
H.-S.
Tan
,
J. Phys. Chem. Lett.
8
,
257
(
2017
).
15.
M. E.
Siemens
,
G.
Moody
,
H.
Li
,
A. D.
Bristow
, and
S. T.
Cundiff
,
Opt. Express
18
,
17699
(
2010
).
16.
J.
Dostál
,
F.
Vácha
,
J.
Pšenčík
, and
D.
Zigmantas
,
J. Phys. Chem. Lett.
5
,
1743
(
2014
).
17.
P.
Nuernberger
,
S.
Ruetzel
, and
T.
Brixner
,
Angew. Chem., Int. Ed.
54
,
11368
(
2015
).
18.
V.
Butkus
,
J.
Alster
,
E.
Bašinskaitė
,
R.
Augulis
,
P.
Neuhaus
,
L.
Valkunas
,
H. L.
Anderson
,
D.
Abramavicius
, and
D.
Zigmantas
,
J. Phys. Chem. Lett.
8
,
2344
(
2017
).
19.
P.
Malý
,
J.
Lüttig
,
S.
Mueller
,
M. H.
Schreck
,
C.
Lambert
, and
T.
Brixner
,
Phys. Chem. Chem. Phys.
22
,
21222
(
2020
).
20.
J.
Dostál
,
B.
Benešová
, and
T.
Brixner
,
J. Chem. Phys.
145
,
124312
(
2016
).
21.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
,
1st ed.
(
Cambridge University Press
,
New York
,
2011
).
22.
R.
Augulis
and
D.
Zigmantas
,
Opt. Express
19
,
13126
(
2011
).
23.
S.-H.
Shim
and
M. T.
Zanni
,
Phys. Chem. Chem. Phys.
11
,
748
(
2009
).
24.
M.
Cho
,
T.
Brixner
,
I.
Stiopkin
,
H.
Vaswani
, and
G. R.
Fleming
,
J. Chin. Chem. Soc.
53
,
15
(
2006
).
25.
P.
Malý
and
T.
Mančal
,
J. Phys. Chem. Lett.
9
,
5654
(
2018
).
26.
D.
Sun
,
Y.
Rao
,
G. A.
Reider
,
G.
Chen
,
Y.
You
,
L.
Brézin
,
A. R.
Harutyunyan
, and
T. F.
Heinz
,
Nano Lett.
14
,
5625
(
2014
).
27.
S.
Taguchi
,
M.
Saruyama
,
T.
Teranishi
, and
Y.
Kanemitsu
,
Phys. Rev. B
83
,
155324
(
2011
).
28.
T.
Chlouba
,
F.
Trojánek
,
J.
Laube
,
D.
Hiller
,
S.
Gutsch
,
M.
Zacharias
, and
P.
Malý
,
Sci. Rep.
8
,
1703
(
2018
).
29.
S.
Pedersen
,
T.
Baumert
, and
A. H.
Zewail
,
J. Phys. Chem.
97
,
12460
(
1993
).
30.
J.
Pšenčík
,
Y.-Z.
Ma
,
J. B.
Arellano
,
J.
Hála
, and
T.
Gillbro
,
Biophys. J.
84
,
1161
(
2003
).
31.
T.
Joo
,
Y.
Jia
,
J. Y.
Yu
,
M. J.
Lang
, and
G. R.
Fleming
,
J. Chem. Phys.
104
,
6089
(
1996
).
32.
G.
Trinkunas
,
J. L.
Herek
,
T.
Polívka
,
V.
Sundström
, and
T.
Pullerits
,
Phys. Rev. Lett.
86
,
4167
(
2001
).
33.
L.
Valkunas
,
Y.-Z.
Ma
, and
G. R.
Fleming
,
Phys. Rev. B
73
,
115432
(
2006
).
34.
H.
Marciniak
,
X.-Q.
Li
,
F.
Würthner
, and
S.
Lochbrunner
,
J. Phys. Chem. A
115
,
648
(
2011
).
35.
J.
Dostál
,
F.
Fennel
,
F.
Koch
,
S.
Herbst
,
F.
Würthner
, and
T.
Brixner
,
Nat. Commun.
9
,
2466
(
2018
).
36.
B.
Kriete
,
J.
Lüttig
,
T.
Kunsel
,
P.
Malý
,
T. L. C.
Jansen
,
J.
Knoester
,
T.
Brixner
, and
M. S.
Pshenichnikov
,
Nat. Commun.
10
,
4615
(
2019
).
37.
M.
Vengris
,
D. S.
Larsen
,
L.
Valkunas
,
G.
Kodis
,
C.
Herrero
,
D.
Gust
,
T.
Moore
,
A.
Moore
, and
R.
van Grondelle
,
J. Phys. Chem. B
117
,
11372
(
2013
).
38.
E. E.
Ostroumov
,
R. M.
Mulvaney
,
J. M.
Anna
,
R. J.
Cogdell
, and
G. D.
Scholes
,
J. Phys. Chem. B
117
,
11349
(
2013
).
39.
P.
Malý
,
A. T.
Gardiner
,
R. J.
Cogdell
,
R.
van Grondelle
, and
T.
Mančal
,
Phys. Chem. Chem. Phys.
20
,
4360
(
2018
).
40.
D.
Zigmantas
,
T.
Polívka
,
P.
Persson
, and
V.
Sundström
,
Chem. Phys. Rev.
3
,
041303
(
2022
).
41.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Blackwell Science
,
Oxford
,
2002
).
42.
T.
Bittner
,
K.-D.
Irrgang
,
G.
Renger
, and
M. R.
Wasielewski
,
J. Phys. Chem.
98
,
11821
(
1994
).
43.
L.
Valkunas
,
G.
Trinkunas
,
V.
Liuolia
, and
R.
van Grondelle
,
Biophys. J.
69
,
1117
(
1995
).
44.
Y.-Z.
Ma
,
R. J.
Cogdell
, and
T.
Gillbro
,
J. Phys. Chem. B
101
,
1087
(
1997
).
45.
Y.
Lee
,
M.
Gorka
,
J. H.
Golbeck
, and
J. M.
Anna
,
J. Am. Chem. Soc.
140
,
11631
(
2018
).
46.
Z.
Zhang
,
P. H.
Lambrev
,
K. L.
Wells
,
G.
Garab
, and
H.-S.
Tan
,
Nat. Commun.
6
,
7914
(
2015
).
47.
S.
Mueller
,
J.
Lüttig
,
P.
Malý
,
L.
Ji
,
J.
Han
,
M.
Moos
,
T. B.
Marder
,
U. H. F.
Bunz
,
A.
Dreuw
,
C.
Lambert
, and
T.
Brixner
,
Nat. Commun.
10
,
4735
(
2019
).
48.
S.
Mueller
and
T.
Brixner
,
J. Phys. Chem. Lett.
11
,
5139
(
2020
).
49.
F.
Ding
,
E. C.
Fulmer
, and
M. T.
Zanni
,
J. Chem. Phys.
123
,
094502
(
2005
).
50.
A. F.
Fidler
,
E.
Harel
, and
G. S.
Engel
,
J. Phys. Chem. Lett.
1
,
2876
(
2010
).
51.
D. B.
Turner
and
K. A.
Nelson
,
Nature
466
,
1089
(
2010
).
52.
B.
Brüggemann
and
T.
Pullerits
,
New J. Phys.
13
,
025024
(
2011
).
53.
P.
Malý
,
J.
Lüttig
,
A.
Turkin
,
J.
Dostál
,
C.
Lambert
, and
T.
Brixner
,
Chem. Sci.
11
,
456
(
2020
).
54.
P.
Malý
,
S.
Mueller
,
J.
Lüttig
,
C.
Lambert
, and
T.
Brixner
,
J. Chem. Phys.
153
,
144204
(
2020
).
55.
C.
Heshmatpour
,
P.
Malevich
,
F.
Plasser
,
M.
Menger
,
C.
Lambert
,
F.
Šanda
, and
J.
Hauer
,
J. Phys. Chem. Lett.
11
,
7776
(
2020
).
56.
P.
Brosseau
,
S.
Palato
,
H.
Seiler
,
H.
Baker
, and
P.
Kambhampati
,
J. Chem. Phys.
153
,
234703
(
2020
).
57.
S.
Mueller
,
J.
Lüttig
,
L.
Brenneis
,
D.
Oron
, and
T.
Brixner
,
ACS Nano
15
,
4647
(
2021
).
58.
S.
Yu
,
Y.
Geng
,
D.
Liang
,
H.
Li
, and
X.
Liu
,
Opt. Lett.
47
,
997
(
2022
).
59.
C.
Heshmatpour
,
J.
Hauer
, and
F.
Šanda
,
Chem. Phys.
528
,
110433
(
2020
).
60.
M.
Mootz
,
L.
Luo
,
J.
Wang
, and
llias E.
Perakis
,
Commun. Phys.
5
,
47
(
2022
).
61.
P.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
,
Science
300
,
1553
(
2003
).
62.
P. F.
Tekavec
,
G. A.
Lott
, and
A. H.
Marcus
,
J. Chem. Phys.
127
,
214307
(
2007
).
63.
M.
Aeschlimann
,
T.
Brixner
,
A.
Fischer
,
C.
Kramer
,
P.
Melchior
,
W.
Pfeiffer
,
C.
Schneider
,
C.
Strüber
,
P.
Tuchscherer
, and
D. V.
Voronine
,
Science
333
,
1723
(
2011
).
64.
S.
Draeger
,
S.
Roeding
, and
T.
Brixner
,
Opt. Express
25
,
3259
(
2017
).
65.
V.
Perlík
,
J.
Hauer
, and
F.
Šanda
,
J. Opt. Soc. Am. B
34
,
430
(
2017
).
66.
P.
Malý
,
J.
Lüttig
,
P. A.
Rose
,
A.
Turkin
,
C.
Lambert
,
J. J.
Krich
, and
T.
Brixner
, in
The International Conference on Ultrafast Phenomena (UP) 2022 (2022)
(
Optica Publishing Group
,
2022
), p.
W2A.6
.
67.
P. A.
Rose
,
J.
Lüttig
,
P.
Malý
,
T.
Brixner
, and
J. J.
Krich
, in
The International Conference on Ultrafast Phenomena (UP) 2022 (2022)
(
Optica Publishing Group
,
2022
), p.
Th4A.14
.
68.
P.
Malý
,
J.
Lüttig
,
P. A.
Rose
,
A.
Turkin
,
C.
Lambert
,
J. J.
Krich
, and
T.
Brixner
,
Nature
616
,
280
287
(
2023
).
69.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
,
1st ed.
(
Oxford University Press
,
New York
,
1995
).
70.
P. A.
Rose
and
J. J.
Krich
,
J. Chem. Phys.
154
,
034109
(
2021
).
71.
S. F.
Völker
,
A.
Schmiedel
,
M.
Holzapfel
,
K.
Renziehausen
,
V.
Engel
, and
C.
Lambert
,
J. Phys. Chem. C
118
,
17467
(
2014
).
72.
C.
Rehhagen
,
M.
Stolte
,
S.
Herbst
,
M.
Hecht
,
S.
Lochbrunner
,
F.
Würthner
, and
F.
Fennel
,
J. Phys. Chem. Lett.
11
,
6612
(
2020
).
73.
S. M.
Gallagher Faeder
and
D. M.
Jonas
,
J. Phys. Chem. A
103
,
10489
(
1999
).
74.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
,
J. Chem. Phys.
103
,
3998
(
1995
).
75.
T.
Mančal
,
A. V.
Pisliakov
, and
G. R.
Fleming
,
J. Chem. Phys.
124
,
234504
(
2006
).
76.
L.
Chen
,
E.
Palacino-González
,
M. F.
Gelin
, and
W.
Domcke
,
J. Chem. Phys.
147
,
234104
(
2017
).
77.
H.-S.
Tan
,
J. Chem. Phys.
129
,
124501
(
2008
).
78.
G. B.
Wright
,
M.
Javed
,
H.
Montanelli
, and
L. N.
Trefethen
,
SIAM J. Sci. Comput.
37
,
C554
(
2015
).
79.
A.
Turkin
,
P.
Malý
, and
C.
Lambert
,
Phys. Chem. Chem. Phys.
23
,
18393
(
2021
).
80.
R.
Trebino
,
Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses
,
1st ed.
(
Springer
,
New York
,
2002
).

Supplementary Material

You do not currently have access to this content.