We studied the formation of zinc selenide (ZnSe) from zinc chloride (ZnCl2) and trioctylphosphine selenide (TOP=Se) in oleylamine, a chemistry originally proposed to grow ZnSe shells around InP core quantum dots. By monitoring the formation of ZnSe in reactions with and without InP seeds by quantitative absorbance and nuclear magnetic resonance (NMR) spectroscopy, we observe that the ZnSe formation rate is independent of the presence of InP cores. Similar to the seeded growth of CdSe and CdS, this observation supports a ZnSe growth mechanism through the inclusion of reactive ZnSe monomers that form homogeneously in the solution. Furthermore, by combining NMR and mass spectrometry, we identified the dominant reaction products of the ZnSe formation reaction as oleylammonium chloride and amino-substitutions of TOP, i.e., iminophosphoranes (TOP=NR), aminophosphonium chloride salts [TOP(NHR)Cl], and bis(amino)phosphoranes [TOP(NHR)2]. Based on the acquired results, we outline a reaction scheme that involves the complexation of TOP=Se by ZnCl2, followed by the nucleophilic addition of oleylamine onto the Lewis acid activated P–Se bond, thereby eliminating ZnSe monomers and forming amino-substitutions of TOP. Our work highlights the central role of oleylamine, acting as both the nucleophile and Brønsted base, in the transformation of metal halides and alkylphosphine chalcogenides into metal chalcogenides.

1.
T.-H.
Kim
,
S.
Jun
,
K.-S.
Cho
,
B. L.
Choi
, and
E.
Jang
, “
Bright and stable quantum dots and their applications in full-color displays
,”
MRS Bull.
38
,
712
720
(
2013
).
2.
M. V.
Kovalenko
,
L.
Manna
,
A.
Cabot
,
Z.
Hens
,
D. V.
Talapin
,
C. R.
Kagan
,
V. I.
Klimov
,
A. L.
Rogach
,
P.
Reiss
,
D. J.
Milliron
et al, “
Prospects of nanoscience with nanocrystals
,”
ACS Nano
9
,
1012
1057
(
2015
).
3.
C. B.
Murray
,
D. J.
Norris
, and
M. G.
Bawendi
, “
Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites
,”
J. Am. Chem. Soc.
115
,
8706
8715
(
1993
).
4.
S. G.
Kwon
and
T.
Hyeon
, “
Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods
,”
Small
7
,
2685
2702
(
2011
).
5.
Y.
Yin
and
A. P.
Alivisatos
, “
Colloidal nanocrystal synthesis and the organic–inorganic interface
,”
Nature
437
,
664
670
(
2005
).
6.
C. B.
Murray
,
C. R.
Kagan
, and
M. G.
Bawendi
, “
Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies
,”
Annu. Rev. Mater. Sci.
30
,
545
610
(
2000
).
7.
X.
Peng
,
L.
Manna
,
W.
Yang
,
J.
Wickham
,
E.
Scher
,
A.
Kadavanich
, and
A. P.
Alivisatos
, “
Shape control of CdSe nanocrystals
,”
Nature
404
,
59
61
(
2000
).
8.
R.
García-Rodríguez
and
H.
Liu
, “
Mechanistic study of the synthesis of CdSe nanocrystals: Release of selenium
,”
J. Am. Chem. Soc.
134
,
1400
1403
(
2012
).
9.
J. S.
Owen
,
E. M.
Chan
,
H.
Liu
, and
A. P.
Alivisatos
, “
Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals
,”
J. Am. Chem. Soc.
132
,
18206
18213
(
2010
).
10.
T. P. A.
Ruberu
,
H. R.
Albright
,
B.
Callis
,
B.
Ward
,
J.
Cisneros
,
H.-J.
Fan
, and
J.
Vela
, “
Molecular control of the nanoscale: Effect of phosphine–chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology
,”
ACS Nano
6
,
5348
5359
(
2012
).
11.
B. M.
Cossairt
and
J. S.
Owen
, “
CdSe clusters: At the interface of small molecules and quantum dots
,”
Chem. Mater.
23
,
3114
3119
(
2011
).
12.
Y.
Li
,
X.
Li
,
C.
Yang
, and
Y.
Li
, “
Controlled synthesis of CdS nanorods and hexagonal nanocrystals
,”
J. Mater. Chem.
13
,
2641
2648
(
2003
).
13.
P. B.
Green
,
P.
Narayanan
,
Z.
Li
,
P.
Sohn
,
C. J.
Imperiale
, and
M. W. B.
Wilson
, “
Controlling cluster intermediates enables the synthesis of small PbS nanocrystals with narrow ensemble line widths
,”
Chem. Mater.
32
,
4083
4094
(
2020
).
14.
P. M.
Allen
,
B. J.
Walker
, and
M. G.
Bawendi
, “
Mechanistic insights into the Formation of InP quantum dots
,”
Angew. Chem., Int. Ed.
49
,
760
762
(
2010
).
15.
M. L.
Steigerwald
and
L. E.
Brus
, “
Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters
,”
Annu. Rev. Mater. Sci.
19
,
471
495
(
1989
).
16.
J. S.
Steckel
,
B. K. H.
Yen
,
D. C.
Oertel
, and
M. G.
Bawendi
, “
On the mechanism of lead chalcogenide nanocrystal formation
,”
J. Am. Chem. Soc.
128
,
13032
13033
(
2006
).
17.
P. T.
Prins
,
F.
Montanarella
,
K.
Dümbgen
,
Y.
Justo
,
J. C.
Van Der Bok
,
S. O. M.
Hinterding
,
J. J.
Geuchies
,
J.
Maes
,
K.
De Nolf
,
S.
Deelen
et al, “
Extended nucleation and superfocusing in colloidal semiconductor nanocrystal synthesis
,”
Nano Lett.
21
,
2487
2496
(
2021
).
18.
C. R.
Bullen
and
P.
Mulvaney
, “
Nucleation and growth kinetics of CdSe nanocrystals in octadecene
,”
Nano Lett.
4
,
2303
2307
(
2004
).
19.
H.
Liu
,
J. S.
Owen
, and
A. P.
Alivisatos
, “
Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis
,”
J. Am. Chem. Soc.
129
,
305
312
(
2007
).
20.
E.
Bennett
,
M. W.
Greenberg
,
A. J.
Jordan
,
L. S.
Hamachi
,
S.
Banerjee
,
S. J. L.
Billinge
, and
J. S.
Owen
, “
Size dependent optical properties and structure of ZnS nanocrystals prepared from a library of thioureas
,”
Chem. Mater.
34
,
706
717
(
2022
).
21.
M. P.
Campos
,
M. P.
Hendricks
,
A. N.
Beecher
,
W.
Walravens
,
R. A.
Swain
,
G. T.
Cleveland
,
Z.
Hens
,
M. Y.
Sfeir
, and
J. S.
Owen
, “
A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit
,”
J. Am. Chem. Soc.
139
,
2296
2305
(
2017
).
22.
M. P.
Hendricks
,
M. P.
Campos
,
G. T.
Cleveland
,
I.
Jen-La Plante
, and
J. S.
Owen
, “
A tunable library of substituted thiourea precursors to metal sulfide nanocrystals
,”
Science
348
,
1226
1230
(
2015
).
23.
D.
Battaglia
and
X.
Peng
, “
formation of high quality InP and InAs nanocrystals in a noncoordinating solvent
,”
Nano Lett.
2
,
1027
1030
(
2002
).
24.
J.
Joo
,
H. B.
Na
,
T.
Yu
,
J. H.
Yu
,
Y. W.
Kim
,
F.
Wu
,
J. Z.
Zhang
, and
T.
Hyeon
, “
Generalized and facile synthesis of semiconducting metal sulfide nanocrystals
,”
J. Am. Chem. Soc.
125
,
11100
11105
(
2003
).
25.
Z.
Deng
,
K. S.
Jeong
, and
P.
Guyot-Sionnest
, “
Colloidal quantum dots intraband photodetectors
,”
ACS Nano
8
,
11707
11714
(
2014
).
26.
A.
Chu
,
B.
Martinez
,
S.
Ferré
,
V.
Noguier
,
C.
Gréboval
,
C.
Livache
,
J.
Qu
,
Y.
Prado
,
N.
Casaretto
,
N.
Goubet
et al, “
HgTe nanocrystals for SWIR detection and their integration up to the focal plane array
,”
ACS Appl. Mater. Interfaces
11
,
33116
33123
(
2019
).
27.
M. D.
Tessier
,
D.
Dupont
,
K.
De Nolf
,
J.
De Roo
, and
Z.
Hens
, “
Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots
,”
Chem. Mater.
27
,
4893
4898
(
2015
).
28.
M. D.
Tessier
,
K.
De Nolf
,
D.
Dupont
,
D.
Sinnaeve
,
J.
De Roo
, and
Z.
Hens
, “
Aminophosphines: A double role in the synthesis of colloidal indium phosphide quantum dots
,”
J. Am. Chem. Soc.
138
,
5923
5929
(
2016
).
29.
H.
Van Avermaet
,
P.
Schiettecatte
,
S.
Hinz
,
L.
Giordano
,
F.
Ferrari
,
C.
Nayral
,
F.
Delpech
,
J.
Maultzsch
,
H.
Lange
, and
Z.
Hens
, “
Full-spectrum InP-based quantum dots with near-unity photoluminescence quantum efficiency
,”
ACS Nano
16
,
9701
(
2022
).
30.
F.
Sousa Velosa
,
H.
Van Avermaet
,
P.
Schiettecatte
,
L.
Mingabudinova
,
P.
Geiregat
, and
Z.
Hens
, “
State filling and stimulated emission by colloidal InP/ZnSe core/shell quantum dots
,”
Adv. Opt. Mater.
10
,
2200328
(
2022
).
31.
B. G.
Jeong
,
J. H.
Chang
,
D.
Hahm
,
S.
Rhee
,
M.
Park
,
S.
Lee
,
Y.
Kim
,
D.
Shin
,
J. W.
Park
,
C.
Lee
et al, “
Interface polarization in heterovalent core–shell nanocrystals
,”
Nat. Mater.
21
,
246
252
(
2022
).
32.
Z.
Hens
and
I.
Moreels
, “
Light absorption by colloidal semiconductor quantum dots
,”
J. Mater. Chem.
22
,
10406
10415
(
2012
).
33.
I.
Nakonechnyi
,
M.
Sluydts
,
Y.
Justo
,
J.
Jasieniak
, and
Z.
Hens
, “
Mechanistic insights in seeded growth synthesis of colloidal core/shell quantum dots
,”
Chem. Mater.
29
,
4719
4727
(
2017
).
34.
A.
Zheng
,
S.-B.
Liu
, and
F.
Deng
, “
31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts
,”
Chem. Rev.
117
,
12475
12531
(
2017
).
35.
Y.
Chu
,
Z.
Yu
,
A.
Zheng
,
H.
Fang
,
H.
Zhang
,
S.-J.
Huang
,
S.-B.
Liu
, and
F.
Deng
, “
Acidic strengths of Brønsted and Lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine
,”
J. Phys. Chem. C
115
,
7660
7667
(
2011
).
36.
S.
Eguchi
,
Y.
Matsushita
, and
K.
Yamashita
, “
The aza-wittic reaction in heterocyclic synthesis. A review
,”
Org. Prep. Proced. Int.
24
,
209
243
(
1992
).
37.
H.
Krawczyk
,
M.
Dzięgielewski
,
D.
Deredas
,
A.
Albrecht
, and
Ł.
Albrecht
, “
Chiral iminophosphoranes—An emerging class of superbase organocatalysts
,”
Eur. J. Chem.
21
,
10268
10277
(
2015
).
38.
R.
García-Rodríguez
,
M. P.
Hendricks
,
B. M.
Cossairt
,
H.
Liu
, and
J. S.
Owen
, “
Conversion reactions of cadmium chalcogenide nanocrystal precursors
.
Chem. Mater.
2013
,
25
,
1233
1249
.

Supplementary Material

You do not currently have access to this content.