Infrared (IR) spectroscopy using ultracold helium nanodroplet matrices has proven to be a powerful method to interrogate encapsulated ions, molecules, and clusters. Due to the helium droplets’ high ionization potential, optical transparency, and ability to pick up dopant molecules, the droplets offer a unique modality to probe transient chemical species produced via photo- or electron impact ionization. In this work, helium droplets were doped with acetylene molecules and ionized via electron impact. Ion-molecule reactions within the droplet volume yield larger carbo-cations that were studied via IR laser spectroscopy. This work is focused on cations containing four carbon atoms. The spectra of C4H2+, C4H3+, and C4H5+ are dominated by diacetylene, vinylacetylene, and methylcyclopropene cations, respectively, which are the lowest energy isomers. On the other hand, the spectrum of C4H4+ ions hints at the presence of several co-existing isomers, the identity of which remains to be elucidated.

1.
B.
Andlauer
and
C.
Ottinger
, “
Dissociation lifetimes of molecular ions produced by charge exchange
,”
Z. Naturforsch. A
27
(
2
),
293
309
(
1972
).
2.
J. H. D.
Eland
and
H.
Schulte
, “
Unimolecular ion decompositions: Rate constants as a function of excitation energy
,”
J. Chem. Phys.
62
(
9
),
3835
3836
(
1975
).
3.
Y.
Ono
and
C. Y.
Ng
, “
A study of the unimolecular decomposition of the (C2H2)3+ complex
,”
J. Am. Chem. Soc.
104
(
18
),
4752
4758
(
1982
).
4.
Y.
Ono
and
C. Y.
Ng
, “
A study of the unimolecular decomposition of the (C2H2)2+ complex
,”
J. Chem. Phys.
77
(
6
),
2947
2955
(
1982
).
5.
J. A.
Booze
and
T.
Baer
, “
The photoionization and dissociation dynamics of energy‐selected acetylene dimers, trimers, and tetramers
,”
J. Chem. Phys.
98
(
1
),
186
200
(
1993
).
6.
S. A.
Sandford
,
M.
Nuevo
,
P. P.
Bera
, and
T. J.
Lee
, “
Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks
,”
Chem. Rev.
120
(
11
),
4616
4659
(
2020
).
7.
P. O.
Momoh
,
A. M.
Hamid
,
S. A.
Abrash
, and
M.
Samy El-Shall
, “
Structure and hydration of the C4H4·+ ion formed by electron impact ionization of acetylene clusters
,”
J. Chem. Phys.
134
(
20
),
204315
(
2011
).
8.
P. O.
Momoh
,
A. M.
Hamid
,
A.-R.
Soliman
,
S. A.
Abrash
, and
M. S.
El-Shall
, “
Structure of the C8H8·+ radical cation formed by electron impact ionization of acetylene clusters. Evidence for a (benzene·+·acetylene) complex
,”
J. Phys. Chem. Lett.
2
(
19
),
2412
2419
(
2011
).
9.
J.
Kočišek
,
J.
Lengyel
, and
M.
Fárník
, “
Ionization of large homogeneous and heterogeneous clusters generated in acetylene–Ar expansions: Cluster ion polymerization
,”
J. Chem. Phys.
138
(
12
),
124306
(
2013
).
10.
T.
Stein
,
B.
Bandyopadhyay
,
T. P.
Troy
,
Y.
Fang
,
O.
Kostko
,
M.
Ahmed
, and
M.
Head-Gordon
, “
Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
21
),
E4125
E4133
(
2017
).
11.
Y.
Wang
,
E.
Wang
,
J.
Zhou
,
A.
Dorn
, and
X.
Ren
, “
Formation of covalently bound C4H4+ upon electron-impact ionization of acetylene dimer
,”
J. Chem. Phys.
154
(
14
),
144301
(
2021
).
12.
B.
Bandyopadhyay
,
T.
Stein
,
Y.
Fang
,
O.
Kostko
,
A.
White
,
M.
Head-Gordon
, and
M.
Ahmed
, “
Probing ionic complexes of ethylene and acetylene with vacuum-ultraviolet radiation
,”
J. Phys. Chem. A
120
(
27
),
5053
5064
(
2016
).
13.
P. P.
Bera
,
R.
Peverati
,
M.
Head-Gordon
, and
T. J.
Lee
, “
Hydrocarbon growth via ion-molecule reactions: Computational studies of the isomers of C4H2+, C6H2+ and C6H4+ and their formation paths from acetylene and its fragments
,”
Phys. Chem. Chem. Phys.
17
(
3
),
1859
1869
(
2015
).
14.
E.
Rossich Molina
and
T.
Stein
, “
The effect of cluster size on the intra-cluster ionic polymerization process
,”
Molecules
26
(
16
),
4782
(
2021
).
15.
T.
Stein
and
J.
Jose
, “
Molecular Formation upon ionization of van der Waals clusters and implication to astrochemistry
,”
Isr. J. Chem.
60
(
8–9
),
842
849
(
2020
).
16.
R. A.
Relph
,
J. C.
Bopp
,
J. R.
Roscioli
, and
M. A.
Johnson
, “
Structural characterization of (C2H2)1–6+ cluster ions by vibrational predissociation spectroscopy
,”
J. Chem. Phys.
131
(
11
),
114305
(
2009
).
17.
S.
Smolarek
,
N. B.
Brauer
,
W. J.
Buma
, and
M.
Drabbels
, “
IR spectroscopy of molecular ions by nonthermal ion ejection from helium nanodroplets
,”
J. Am. Chem. Soc.
132
(
40
),
14086
14091
(
2010
).
18.
A. I.
González Flórez
,
D.-S.
Ahn
,
S.
Gewinner
,
W.
Schöllkopf
, and
G.
von Helden
, “
IR spectroscopy of protonated leu-enkephalin and its 18-crown-6 complex embedded in helium droplets
,”
Phys. Chem. Chem. Phys.
17
(
34
),
21902
21911
(
2015
).
19.
D.
Verma
,
S.
Erukala
, and
A. F.
Vilesov
, “
Infrared spectroscopy of water and Zundel cations in helium nanodroplets
,”
J. Phys. Chem. A
124
(
30
),
6207
6213
(
2020
).
20.
J. A.
Davies
,
N. A.
Besley
,
S.
Yang
, and
A. M.
Ellis
, “
Probing elusive cations: Infrared spectroscopy of protonated acetic acid
,”
J. Phys. Chem. Lett.
10
(
9
),
2108
2112
(
2019
).
21.
M.
Kuhn
,
M.
Renzler
,
J.
Postler
,
S.
Ralser
,
S.
Spieler
,
M.
Simpson
,
H.
Linnartz
,
A. G. G. M.
Tielens
,
J.
Cami
,
A.
Mauracher
,
Y.
Wang
,
M.
Alcamí
,
F.
Martín
,
M. K.
Beyer
,
R.
Wester
,
A.
Lindinger
, and
P.
Scheier
, “
Atomically resolved phase transition of fullerene cations solvated in helium droplets
,”
Nat. Commun.
7
,
13550
(
2016
).
22.
S.
Erukala
,
A. J.
Feinberg
,
C. J.
Moon
,
M. Y.
Choi
, and
A. F.
Vilesov
, “
Infrared spectroscopy of ions and ionic clusters upon ionization of ethane in helium droplets
,”
J. Chem. Phys.
156
(
20
),
204306
(
2022
).
23.
S.
Erukala
,
A.
Feinberg
,
A.
Singh
, and
A. F.
Vilesov
, “
Infrared spectroscopy of carbocations upon electron ionization of ethylene in helium nanodroplets
,”
J. Chem. Phys.
155
(
8
),
084306
(
2021
).
24.
J. P.
Toennies
and
A. F.
Vilesov
, “
Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes
,”
Angew. Chem., Int. Ed.
43
(
20
),
2622
2648
(
2004
).
25.
M. Y.
Choi
,
G. E.
Douberly
,
T. M.
Falconer
,
W. K.
Lewis
,
C. M.
Lindsay
,
J. M.
Merritt
,
P. L.
Stiles
, and
R. E.
Miller
, “
Infrared spectroscopy of helium nanodroplets: Novel methods for physics and chemistry
,”
Int. Rev. Phys. Chem.
25
(
1–2
),
15
75
(
2006
).
26.
D.
Verma
,
R. M. P.
Tanyag
,
S. M. O.
O’Connell
, and
A. F.
Vilesov
, “
Infrared spectroscopy in superfluid helium droplets
,”
Adv. Phys.: X
4
(
1
),
1553569
(
2019
).
27.
S.
Yang
and
A. M.
Ellis
, “
Helium droplets: A chemistry perspective
,”
Chem. Soc. Rev.
42
(
2
),
472
484
(
2013
).
28.
M.
Lewerenz
,
B.
Schilling
, and
J. P.
Toennies
, “
Successive capture and coagulation of atoms and molecules to small clusters in large liquid helium clusters
,”
J. Chem. Phys.
102
(
20
),
8191
8207
(
1995
).
29.
C.
Callegari
and
W. E.
Ernst
, in
Handbook of High‐resolution Spectroscopy
(
edited by M. Quack and F. Merkt (Wiley, Chichester
,
2011
), pp.
1551
1594
.
30.
D.
Verma
and
A. F.
Vilesov
, “
Pulsed helium droplet beams
,”
Chem. Phys. Lett.
694
,
129
134
(
2018
).
31.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16 Rev. C.01
,
Wallingford, CT
,
2016
.
32.
J. K.
Kim
and
W. T.
Huntress
, “
Product distributions and rate constants for the reactions of thermal energy He÷ ions with some neutral hydrides and hydrocarbons
,”
Int. J. Mass Spectrom. Ion Phys.
16
(
4
),
451
454
(
1975
).
33.
W. E.
Wallace
, in
NIST Chemistry WebBook, SRD 69,
, edited by
P. J.
Linstorm
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
MD
,
2021
),
34.
V. E.
Bondybey
and
J. H.
English
, “
Electronic spectrum of the diacetylene radical cation in solid rare gases
,”
J. Chem. Phys.
71
(
2
),
777
782
(
1979
).
35.
G.
Muller
,
K. J.
Catani
,
M. S.
Scholz
,
U.
Jacovella
,
N. I.
Bartlett
, and
E. J.
Bieske
, “
Electronic spectra of diacetylene cations (HC4H+) tagged with Ar and N2
,”
J. Phys. Chem. A
123
(
33
),
7228
7236
(
2019
).
36.
U.
Jacovella
and
F.
Merkt
, “
Spin–orbit interaction and Renner–Teller effect in HCCCCH+ studied by high-resolution photoelectron spectroscopy
,”
Phys. Chem. Chem. Phys.
19
(
34
),
23524
23531
(
2017
).
37.
M.
Gronowski
,
R.
Kołos
, and
J.
Krełowski
, “
A theoretical study on structure and spectroscopy of C4H2+ isomers
,”
Chem. Phys. Lett.
582
,
56
59
(
2013
).
38.
S.
Brünken
,
F.
Lipparini
,
A.
Stoffels
,
P.
Jusko
,
B.
Redlich
,
J.
Gauss
, and
S.
Schlemmer
, “
Gas-phase vibrational spectroscopy of the hydrocarbon cations l-C3H+, HC3H+, and c-C3H2+: Structures, isomers, and the influence of Ne-tagging
,”
J. Phys. Chem. A
123
(
37
),
8053
8062
(
2019
).
39.
K. J.
Catani
,
G.
Muller
,
P.
Jusko
,
P.
Theulé
,
E. J.
Bieske
, and
C.
Jouvet
, “
Electronic spectrum of the protonated diacetylene cation (H2C4H+)
,”
J. Chem. Phys.
147
(
8
),
084302
(
2017
).
40.
P.
Botschwina
,
H.
Schramm
, and
P.
Sebald
, “
A theoretical investigation of H2C4H+ and the proton affinity of HC4H
,”
Chem. Phys. Lett.
169
(
1
),
121
126
(
1990
).
41.
P. P.
Bera
,
M.
Head-Gordon
, and
T. J.
Lee
, “
Association mechanisms of unsaturated C2 hydrocarbons with their cations: Acetylene and ethylene
,”
Phys. Chem. Chem. Phys.
15
(
6
),
2012
2023
(
2013
).
42.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
,
W. C.
McKee
,
P. v. R.
Schleyer
, and
M. A.
Duncan
, “
Infrared photodissociation spectroscopy of protonated acetylene and its clusters
,”
J. Phys. Chem. A
112
(
9
),
1897
1906
(
2008
).
43.
G.
Muller
,
U.
Jacovella
,
K. J.
Catani
,
G.
da Silva
, and
E. J.
Bieske
, “
Electronic spectrum and photodissociation chemistry of the 1-butyn-3-yl cation, H3CCHCCH+
,”
J. Phys. Chem. A
124
(
12
),
2366
2371
(
2020
).
44.
M.
Briant
,
E.
Mengesha
,
M.-A.
Gaveau
,
B.
Soep
,
J.-M.
Mestdagh
, and
L.
Poisson
, “
Dynamics of acetylene dimers hosted in helium droplets
,”
Phys. Chem. Chem. Phys.
20
(
4
),
2597
2605
(
2018
).
45.
L. F.
Gomez
,
E.
Loginov
,
R.
Sliter
, and
A. F.
Vilesov
, “
Sizes of large He droplets
,”
J. Chem. Phys.
135
(
15
),
154201
(
2011
).
46.
K.
Oleksy
,
F.
Karlický
, and
R.
Kalus
, “
Structures and energetics of helium cluster cations: Equilibrium geometries revisited through the genetic algorithm approach
,”
J. Chem. Phys.
133
(
16
),
164314
(
2010
).
47.
P.
Nijjar
,
A. I.
Krylov
,
O. V.
Prezhdo
,
A. F.
Vilesov
, and
C.
Wittig
, “
Triplet excitons in small helium clusters
,”
J. Phys. Chem. A
123
(
29
),
6113
6122
(
2019
).
48.
E.
Loginov
,
L. F.
Gomez
,
B. G.
Sartakov
, and
A. F.
Vilesov
, “
Formation of large Ag clusters with shells of methane, ethylene, and acetylene in He droplets
,”
J. Phys. Chem. A
120
(
34
),
6738
6744
(
2016
).
49.
J. M.
Bakker
,
R. G.
Satink
,
G.
von Helden
, and
G.
Meijer
, “
Infrared photodissociation spectroscopy of benzene–Ne,Ar complex cations
,”
Phys. Chem. Chem. Phys.
4
(
1
),
24
33
(
2002
).

Supplementary Material

You do not currently have access to this content.