Since the 1920s, the Enskog solutions to the Boltzmann equation have provided a route to predicting the transport properties of dilute gas mixtures. At higher densities, predictions have been limited to gases of hard spheres. In this work, we present a revised Enskog theory for multicomponent mixtures of Mie fluids, where the Barker–Henderson perturbation theory is used to calculate the radial distribution function at contact. With parameters of the Mie-potentials regressed to equilibrium properties, the theory is fully predictive for transport properties. The presented framework offers a link between the Mie potential and transport properties at elevated densities, giving accurate predictions for real fluids. For mixtures of noble gases, diffusion coefficients from experiments are reproduced within ±4%. For hydrogen, the predicted self-diffusion coefficient is within 10% of experimental data up to 200 MPa and at temperatures above 171 K. Binary diffusion coefficients of the CO2/CH4 mixture from simulations are reproduced within 20% at pressures up to 14.7 MPa. Except for xenon in the vicinity of the critical point, the thermal conductivity of noble gases and their mixtures is reproduced within 10% of the experimental data. For other molecules than noble gases, the temperature dependence of the thermal conductivity is under-predicted, while the density dependence appears to be correctly predicted. Predictions of the viscosity are within ±10% of the experimental data for methane, nitrogen, and argon up to 300 bar, for temperatures ranging from 233 to 523 K. At pressures up to 500 bar and temperatures from 200 to 800 K, the predictions are within ±15% of the most accurate correlation for the viscosity of air. Comparing the theory to an extensive set of measurements of thermal diffusion ratios, we find that 49% of the model predictions are within ±20% of the reported measurements. The predicted thermal diffusion factor differs by less than 15% from the simulation results of Lennard-Jones mixtures, even at densities well exceeding the critical density.

1.
B.
Song
,
X.
Wang
,
J.
Wu
, and
Z.
Liu
,
Mol. Phys.
109
,
1607
(
2011
).
2.
F.
Sharipov
and
V. J.
Benites
,
J. Chem. Phys.
147
,
224302
(
2017
).
3.
F.
Sharipov
and
V. J.
Benites
,
Phys. Chem. Chem. Phys.
23
,
16664
(
2021
).
4.
F.
Sharipov
and
V. J.
Benites
,
Phys. Fluids
32
,
077104
(
2020
).
5.
F.
Sharipov
and
V. J.
Benites
,
Phys. Fluids
32
,
097110
(
2020
).
6.
F.
Sharipov
and
V. J.
Benites
,
Fluid Phase Equilib.
498
,
23
(
2019
).
7.
R.
Hellmann
,
C.
Gaiser
,
B.
Fellmuth
,
T.
Vasyltsova
, and
E.
Bich
,
J. Chem. Phys.
154
,
164304
(
2021
).
8.
R.
Hellmann
,
J. Chem. Eng. Data
65
,
4712
(
2020
).
9.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-uniform Gases
,
3rd ed.1
(
Cambridge University Press
,
London
,
1970
).
11.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
John Wiley & Sons
,
1954
).
13.
J. R.
Dorfman
and
E. G. D.
Cohen
,
Phys. Lett.
16
,
124
(
1965
).
14.
R.
Goldman
and
E. A.
Frieman
,
J. Math. Phys.
8
,
1410
(
1967
).
15.
H.
Van Beijeren
and
M. H.
Ernst
,
Phys. Lett. A
43
,
367
(
1973
).
16.
H.
Van Beijeren
and
M. H.
Ernst
,
J. Stat. Phys.
21
,
125
(
1979
).
17.
M.
López de Haro
,
E. G. D.
Cohen
, and
J. M.
Kincaid
,
J. Chem. Phys.
78
,
2746
(
1983
).
18.
J. M.
Kincaid
,
M.
López de Haro
, and
E. G. D.
Cohen
,
J. Chem. Phys.
79
,
4509
(
1983
).
19.
M.
López de Haro
and
E. G. D.
Cohen
,
J. Chem. Phys.
80
,
408
(
1984
).
20.
J. M.
Kincaid
,
E. G. D.
Cohen
, and
M.
López de Haro
,
J. Chem. Phys.
86
,
963
(
1987
).
21.
G. A.
Parsafar
and
Z.
Kalantar
,
Fluid Phase Equilib.
253
,
108
(
2007
).
23.
E.
Yusibani
,
Y.
Takata
,
Z.
Suud
, and
D.
Irwanto
,
J. Phys.: Conf. Ser.
799
,
012008
(
2017
).
24.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
25.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
,
J. Chem. Phys.
139
,
154504
(
2013
).
26.
M.
Hammer
,
A.
Aasen
,
Å.
Ervik
, and
Ø.
Wilhelmsen
,
J. Chem. Phys.
152
,
134106
(
2020
).
27.
D.
Frenkel
and
B.
Smit
,
Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
New York
,
2000
).
28.
H.-K.
Chung
and
A.
Dalgarno
,
Phys. Rev. A
66
,
012712
(
2002
).
29.
A. G.
Shashkov
,
A. F.
Zolotukhina
, and
L. R.
Fokin
,
J. Eng. Phys. Thermophys.
84
,
39
(
2011
).
30.
A. F.
Bogatyrev
,
O. A.
Makeenkova
, and
M. A.
Nezovitina
,
Int. J. Thermophys.
36
,
633
(
2015
).
31.
V.
Papaioannou
,
T.
Lafitte
,
C.
Avendaño
,
C. S.
Adjiman
,
G.
Jackson
,
E. A.
Müller
, and
A.
Galindo
,
J. Chem. Phys.
140
,
054107
(
2014
).
32.
T.
van Westen
,
J. Chem. Phys.
154
,
234502
(
2021
).
33.
H.
Hoang
and
G.
Galliero
,
Eur. Phys. J. E
45
,
42
(
2022
).
34.
S.
Dufal
,
T.
Lafitte
,
A.
Galindo
,
G.
Jackson
, and
A. J.
Haslam
,
AIChE J.
61
,
2891
(
2015
).
35.
36.
E. V.
Kustova
and
E. A.
Nagnibeda
,
Chem. Phys.
208
,
313
(
1996
).
37.
E. V.
Kustova
and
G. M.
Kremer
,
Chem. Phys.
445
,
82
(
2014
).
38.
E.
Kustova
and
M.
Mekhonoshina
,
Phys. Fluids
32
,
096101
(
2020
).
39.
S. K.
Loyalka
,
E. L.
Tipton
, and
R. V.
Tompson
,
Physica A
379
,
417
(
2007
).
40.
E. L.
Tipton
,
R. V.
Tompson
, and
S. K.
Loyalka
,
Eur. J. Mech., B: Fluids
28
,
335
(
2009
).
41.
E. L.
Tipton
,
R. V.
Tompson
, and
S. K.
Loyalka
,
Eur. J. Mech., B: Fluids
28
,
353
(
2009
).
42.
R. V.
Tompson
,
E. L.
Tipton
, and
S. K.
Loyalka
,
Eur. J. Mech., B: Fluids
28
,
695
(
2009
).
43.
J. M.
Ortiz de Zárate
,
Eur. Phys. J. E
42
,
43
(
2019
).
44.
H.
Hoang
,
S.
Delage-Santacreu
, and
G.
Galliero
,
Ind. Eng. Chem. Res.
56
,
9213
(
2017
).
45.
C.
Avendaño
,
T.
Lafitte
,
A.
Galindo
,
C. S.
Adjiman
,
G.
Jackson
, and
E. A.
Müller
,
J. Phys. Chem. B
115
,
11154
(
2011
).
47.
R.
Umla
, “
The Enskog-2σ model, a new viscosity model for simple fluids and alkanes
,” Ph.D. thesis,
Imperial College London
,
2013
.
48.
R.
Umla
and
V.
Vesovic
,
Fluid Phase Equilib.
372
,
34
(
2014
).
49.
SINTEF/NTNU
, “
ThermoTools: ThermoPack
,” https://github.com/thermotools/thermopack,
2023
.
50.
Ø.
Wilhelmsen
,
A.
Aasen
,
G.
Skaugen
,
P.
Aursand
,
A.
Austegard
,
E.
Aursand
,
M. A.
Gjennestad
,
H.
Lund
,
G.
Linga
, and
M.
Hammer
,
Ind. Eng. Chem. Res.
56
,
3503
(
2017
).
51.
V. G.
Jervell
, “
ThermoTools: KineticGas
,” https://github.com/thermotools/KineticGas,
2023
.
52.
A.
Aasen
,
M.
Hammer
,
Å.
Ervik
,
E. A.
Müller
, and
Ø.
Wilhelmsen
,
J. Chem. Phys.
151
,
064508
(
2019
).
53.
J. R.
Mick
,
M.
Soroush Barhaghi
,
B.
Jackman
,
K.
Rushaidat
,
L.
Schwiebert
, and
J. J.
Potoff
,
J. Chem. Phys.
143
,
114504
(
2015
).
54.
J.
Nichele
,
C. R. A.
Abreu
,
L. S. de B.
Alves
, and
I.
Borges
,
J. Supercrit. Fluids
135
,
225
(
2018
).
55.
E. W.
Lemmon
,
I. H.
Bell
,
M. L.
Huber
, and
M. O.
McLinden
, “
Thermophysical properties of fluid systems
,”
NIST Chemistry WebBook, NIST Standard Reference Database Number
69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
),
20899
.
56.
P. J.
Dunlop
,
H. L.
Robjohns
, and
C. M.
Bignell
,
J. Chem. Phys.
86
,
2922
(
1987
).
58.
Dortmund Data Bank
,” www.ddbst.com,
2022
.
59.
G.
Guevara-Carrion
,
S.
Ancherbak
,
A.
Mialdun
,
J.
Vrabec
, and
V.
Shevtsova
,
Sci. Rep.
9
,
8466
(
2019
).
60.
A. S.
de Wijn
,
V.
Vesovic
,
G.
Jackson
, and
J. P. M.
Trusler
,
J. Chem. Phys.
128
,
204901
(
2008
).
61.
A. S.
de Wijn
,
N.
Riesco
,
G.
Jackson
,
J. P.
Martin Trusler
, and
V.
Vesovic
,
J. Chem. Phys.
136
,
074514
(
2012
).
62.
M. J.
Assael
,
M.
Dix
,
A.
Lucas
, and
W. A.
Wakeham
,
J. Chem. Soc., Faraday Trans. 1
77
,
439
(
1981
).
63.
C.
Evers
,
H. W.
Lösch
, and
W.
Wagner
,
Int. J. Thermophys.
23
,
1411
(
2002
).
64.
E. W.
Lemmon
and
R. T.
Jacobsen
,
Int. J. Thermophys.
25
,
21
(
2004
).
65.
V. G.
Jervell
, “
The kinetic gas theory of Mie fluids
,” Master’s thesis,
Norwegian University of Science and Technology
,
2022
.
66.
A.
Aasen
,
M.
Hammer
,
E. A.
Müller
, and
Ø.
Wilhelmsen
,
J. Chem. Phys.
152
,
074507
(
2020
).
67.
M.
Hammer
,
G.
Bauer
,
R.
Stierle
,
J.
Gross
, and
Ø.
Wilhelmsen
,
J. Chem. Phys.
158
,
104107
(
2023
).
68.
N.
Vargaftik
,
Tables on the Thermophysical Properties of Liquids and Gases
,
2nd ed.
(
Hemisphere Publishing Corporation
,
Washington, DC
,
1975
).
69.
W. A.
Oost
and
A. E.
de Vries
,
Physica
41
,
440
(
1969
).
70.
W. A.
Oost
,
J.
Los
,
H.
Cauwenbergh
, and
W.
Van Dael
,
Physica
62
,
409
(
1972
).

Supplementary Material

You do not currently have access to this content.