SARS-CoV-2, the virus causing COVID-19, initiates cell invasion by deploying a receptor binding domain (RBD) to recognize the host transmembrane peptidase angiotensin-converting enzyme 2 (ACE2). Numerous experimental and theoretical studies have adopted high-throughput and structure-guided approaches to (i) understand how the RBD recognizes ACE2, (ii) rationalize, and (iii) predict the effect of viral mutations on the binding affinity. Here, we investigate the allosteric signal triggered by the dissociation of the ACE2-RBD complex. To this end, we construct an Elastic Network Model (ENM), and we use the Structural Perturbation Method (SPM). Our key result is that complex dissociation opens the ACE2 substrate-binding cleft located away from the interface and that fluctuations of the ACE2 binding cleft are facilitated by RBD binding. These and other observations provide a structural and dynamical basis for the influence of SARS-CoV-2 on ACE2 enzymatic activity. In addition, we identify a conserved glycine (G502 in SARS-CoV-2) as a key participant in complex disassembly.

1.
A. C.
Walls
,
Y.-J.
Park
,
M. A.
Tortorici
,
A.
Wall
,
A. T.
McGuire
, and
D.
Veesler
, “
Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
,”
Cell
181
,
281
292.e6
(
2020
).
2.
P.
Zhou
,
X.-L.
Yang
,
X.-G.
Wang
,
B.
Hu
,
L.
Zhang
,
W.
Zhang
,
H.-R.
Si
,
Y.
Zhu
,
B.
Li
,
C.-L.
Huang
,
H.-D.
Chen
,
J.
Chen
,
Y.
Luo
,
H.
Guo
,
R.-D.
Jiang
,
M.-Q.
Liu
,
Y.
Chen
,
X.-R.
Shen
,
X.
Wang
,
X.-S.
Zheng
,
K.
Zhao
,
Q.-J.
Chen
,
F.
Deng
,
L.-L.
Liu
,
B.
Yan
,
F.-X.
Zhan
,
Y.-Y.
Wang
,
G.-F.
Xiao
, and
Z.-L.
Shi
, “
A pneumonia outbreak associated with a new coronavirus of probable bat origin
,”
Nature
579
,
270
273
(
2020
).
3.
M.
Hoffmann
,
H.
Kleine-Weber
,
S.
Schroeder
,
N.
Krüger
,
T.
Herrler
,
S.
Erichsen
,
T. S.
Schiergens
,
G.
Herrler
,
N.-H.
Wu
,
A.
Nitsche
,
M. A.
Müller
,
C.
Drosten
, and
S.
Pöhlmann
, “
SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
,”
Cell
181
,
271
280.e8
(
2020
).
4.
K.
Kuba
,
Y.
Imai
,
S.
Rao
,
H.
Gao
,
F.
Guo
,
B.
Guan
,
Y.
Huan
,
P.
Yang
,
Y.
Zhang
,
W.
Deng
,
L.
Bao
,
B.
Zhang
,
G.
Liu
,
Z.
Wang
,
M.
Chappell
,
Y.
Liu
,
D.
Zheng
,
A.
Leibbrandt
,
T.
Wada
,
A. S.
Slutsky
,
D.
Liu
,
C.
Qin
,
C.
Jiang
, and
J. M.
Penninger
, “
A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury
,”
Nat. Med.
11
,
875
879
(
2005
).
5.
C. P.
Sodhi
,
C.
Wohlford-Lenane
,
Y.
Yamaguchi
,
T.
Prindle
,
W. B.
Fulton
,
S.
Wang
,
P. B.
McCray
,
M.
Chappell
,
D. J.
Hackam
, and
H.
Jia
, “
Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R Axis and facilitates LPS-induced neutrophil infiltration
,”
Am. J. Physiol. Lung Cell Mol. Physiol.
314
,
L17
L31
(
2018
).
6.
D.
Wrapp
,
N.
Wang
,
K. S.
Corbett
,
J. A.
Goldsmith
,
C.-L.
Hsieh
,
O.
Abiona
,
B. S.
Graham
, and
J. S.
McLellan
, “
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
,”
Science
367
,
1260
1263
(
2020
).
7.
R.
Yan
,
Y.
Zhang
,
Y.
Li
,
L.
Xia
,
Y.
Guo
, and
Q.
Zhou
, “
Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
,”
Science
367
,
1444
1448
(
2020
).
8.
Q.
Wang
,
Y.
Zhang
,
L.
Wu
,
S.
Niu
,
C.
Song
,
Z.
Zhang
,
G.
Lu
,
C.
Qiao
,
Y.
Hu
,
K.-Y.
Yuen
,
Q.
Wang
,
H.
Zhou
,
J.
Yan
, and
J.
Qi
, “
Structural and functional basis of SARS-CoV-2 entry by using human ACE2
,”
Cell
181
,
894
904.e9
(
2020
).
9.
J.
Shang
,
G.
Ye
,
K.
Shi
,
Y.
Wan
,
C.
Luo
,
H.
Aihara
,
Q.
Geng
,
A.
Auerbach
, and
F.
Li
, “
Structural basis of receptor recognition by SARS-CoV-2
,”
Nature
581
,
221
224
(
2020
).
10.
D. J.
Benton
,
A. G.
Wrobel
,
P.
Xu
,
C.
Roustan
,
S. R.
Martin
,
P. B.
Rosenthal
,
J. J.
Skehel
, and
S. J.
Gamblin
, “
Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
,”
Nature
588
,
327
330
(
2020
).
11.
L.
Casalino
,
Z.
Gaieb
,
J. A.
Goldsmith
,
C. K.
Hjorth
,
A. C.
Dommer
,
A. M.
Harbison
,
C. A.
Fogarty
,
E. P.
Barros
,
B. C.
Taylor
,
J. S.
McLellan
,
E.
Fadda
, and
R. E.
Amaro
, “
Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein
,”
ACS Cent. Sci.
6
,
1722
1734
(
2020
).
12.
B.
Turoňová
,
M.
Sikora
,
C.
Schürmann
,
W. J. H.
Hagen
,
S.
Welsch
,
F. E. C.
Blanc
,
S.
von Bülow
,
M.
Gecht
,
K.
Bagola
,
C.
Hörner
,
G.
van Zandbergen
,
J.
Landry
,
N. T. D.
de Azevedo
,
S.
Mosalaganti
,
A.
Schwarz
,
R.
Covino
,
M. D.
Mühlebach
,
G.
Hummer
,
J.
Krijnse Locker
, and
M.
Beck
, “
In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges
,”
Science
370
,
203
208
(
2020
).
13.
E. P.
Barros
,
L.
Casalino
,
Z.
Gaieb
,
A. C.
Dommer
,
Y.
Wang
,
L.
Fallon
,
L.
Raguette
,
K.
Belfon
,
C.
Simmerling
, and
R. E.
Amaro
, “
The flexibility of ACE2 in the context of SARS-CoV-2 infection
,”
Biophys. J.
120
,
1072
1084
(
2021
).
14.
Y.
Wan
,
J.
Shang
,
R.
Graham
,
R. S.
Baric
, and
F.
Li
, “
Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus
,”
J. Virol.
94
,
e001277-20
(
2020
).
15.
J.
Zou
,
J.
Yin
,
L.
Fang
,
M.
Yang
,
T.
Wang
,
W.
Wu
,
M. A.
Bellucci
, and
P.
Zhang
, “
Computational prediction of mutational effects on SARS-CoV-2 binding by relative free energy calculations
,”
J. Chem. Inf. Model.
60
,
5794
5802
(
2020
).
16.
A.
Spinello
,
A.
Saltalamacchia
, and
A.
Magistrato
, “
Is the rigidity of SARS-CoV-2 spike receptor-binding motif the hallmark for its enhanced infectivity? Insights from all-atom simulations
,”
J. Phys. Chem. Lett.
11
,
4785
4790
(
2020
).
17.
M.
Ghorbani
,
B. R.
Brooks
, and
J. B.
Klauda
, “
Critical sequence hotspots for binding of novel coronavirus to angiotensin converter enzyme as evaluated by molecular simulations
,”
J. Phys. Chem. B
124
,
10034
10047
(
2020
).
18.
Y.
Wang
,
M.
Liu
, and
J.
Gao
, “
Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
13967
13974
(
2020
).
19.
K. K.
Chan
,
D.
Dorosky
,
P.
Sharma
,
S. A.
Abbasi
,
J. M.
Dye
,
D. M.
Kranz
,
A. S.
Herbert
, and
E.
Procko
, “
Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2
,”
Science
369
,
1261
1265
(
2020
).
20.
T. N.
Starr
,
A. J.
Greaney
,
S. K.
Hilton
,
D.
Ellis
,
K. H. D.
Crawford
,
A. S.
Dingens
,
M. J.
Navarro
,
J. E.
Bowen
,
M. A.
Tortorici
,
A. C.
Walls
,
N. P.
King
,
D.
Veesler
, and
J. D.
Bloom
, “
Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding
,”
Cell
182
,
1295
1310.e20
(
2020
).
21.
B.
Luan
and
T.
Huynh
, “
Insight into SARS-CoV-2’s mutations for evading human antibodies: Sacrifice and survival
,”
J. Med. Chem.
65
,
2820
2826
(
2022
).
22.
D.
Thirumalai
,
C.
Hyeon
,
P. I.
Zhuravlev
, and
G. H.
Lorimer
, “
Symmetry, rigidity, and allosteric signaling: From monomeric proteins to molecular machines
,”
Chem. Rev.
119
,
6788
6821
(
2019
).
23.
L.
Fallon
,
K. A. A.
Belfon
,
L.
Raguette
,
Y.
Wang
,
D.
Stepanenko
,
A.
Cuomo
,
J.
Guerra
,
S.
Budhan
,
S.
Varghese
,
C. P.
Corbo
,
R. C.
Rizzo
, and
C.
Simmerling
, “
Free energy landscapes from SARS-CoV-2 spike glycoprotein simulations suggest that RBD opening can be modulated via interactions in an allosteric pocket
,”
J. Am. Chem. Soc.
143
,
11349
11360
(
2021
).
24.
R.
Henderson
,
R. J.
Edwards
,
K.
Mansouri
,
K.
Janowska
,
V.
Stalls
,
S. M. C.
Gobeil
,
M.
Kopp
,
D.
Li
,
R.
Parks
,
A. L.
Hsu
,
M. J.
Borgnia
,
B. F.
Haynes
, and
P.
Acharya
, “
Controlling the SARS-CoV-2 spike glycoprotein conformation
,”
Nat. Struct. Mol. Biol.
27
,
925
933
(
2020
).
25.
D.
Weissman
,
M.-G.
Alameh
,
T.
de Silva
,
P.
Collini
,
H.
Hornsby
,
R.
Brown
,
C. C.
LaBranche
,
R. J.
Edwards
,
L.
Sutherland
,
S.
Santra
,
K.
Mansouri
,
S.
Gobeil
,
C.
McDanal
,
N.
Pardi
,
N.
Hengartner
,
P. J. C.
Lin
,
Y.
Tam
,
P. A.
Shaw
,
M. G.
Lewis
,
C.
Boesler
,
U.
Şahin
,
P.
Acharya
,
B. F.
Haynes
,
B.
Korber
, and
D. C.
Montefiori
, “
D614G spike mutation increases SARS CoV-2 susceptibility to neutralization
,”
Cell Host Microbe
29
,
23
31.e4
(
2021
).
26.
D.
Ray
,
L.
Le
, and
I.
Andricioaei
, “
Distant residues modulate conformational opening in SARS-CoV-2 spike protein
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2100943118
(
2021
).
27.
B.
Korber
,
W. M.
Fischer
,
S.
Gnanakaran
,
H.
Yoon
,
J.
Theiler
,
W.
Abfalterer
,
N.
Hengartner
,
E. E.
Giorgi
,
T.
Bhattacharya
,
B.
Foley
,
K. M.
Hastie
,
M. D.
Parker
,
D. G.
Partridge
,
C. M.
Evans
,
T. M.
Freeman
,
T. I.
de Silva
,
A.
Angyal
,
R. L.
Brown
,
L.
Carrilero
,
L. R.
Green
,
D. C.
Groves
,
K. J.
Johnson
,
A. J.
Keeley
,
B. B.
Lindsey
,
P. J.
Parsons
,
M.
Raza
,
S.
Rowland-Jones
,
N.
Smith
,
R. M.
Tucker
,
D.
Wang
,
M. D.
Wyles
,
C.
McDanal
,
L. G.
Perez
,
H.
Tang
,
A.
Moon-Walker
,
S. P.
Whelan
,
C. C.
LaBranche
,
E. O.
Saphire
, and
D. C.
Montefiori
, “
Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus
,”
Cell
182
,
812
827.e19
(
2020
).
28.
P. V.
Raghuvamsi
,
N. K.
Tulsian
,
F.
Samsudin
,
X.
Qian
,
K.
Purushotorman
,
G.
Yue
,
M. M.
Kozma
,
W. Y.
Hwa
,
J.
Lescar
,
P. J.
Bond
,
P. A.
MacAry
, and
G. S.
Anand
, “
SARS-CoV-2 S protein:ACE2 interaction reveals novel allosteric targets
,”
eLife
10
,
e63646
(
2021
).
29.
F.
Trozzi
,
N.
Karki
,
Z.
Song
,
N.
Verma
,
E.
Kraka
,
B. D.
Zoltowski
, and
P.
Tao
, “
Allosteric control of ACE2 peptidase domain dynamics
,”
Org. Biomol. Chem.
20
,
3605
3618
(
2022
).
30.
G. M.
Verkhivker
, “
Molecular simulations and network modeling reveal an allosteric signaling in the SARS-CoV-2 spike proteins
,”
J. Proteome Res.
19
,
4587
4608
(
2020
).
31.
Y.
Cai
,
J.
Zhang
,
T.
Xiao
,
H.
Peng
,
S. M.
Sterling
,
R. M.
Walsh
, Jr.
,
S.
Rawson
,
S.
Rits-Volloch
, and
B.
Chen
, “
Distinct conformational states of SARS-CoV-2 spike protein
,”
Science
369
,
1586
1592
(
2020
).
32.
J.
Lu
and
P. D.
Sun
, “
High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity
,”
J. Biol. Chem.
295
,
18579
18588
(
2020
).
33.
A. A.
Kiseleva
,
E. M.
Troisi
,
S. E.
Hensley
,
R. M.
Kohli
, and
J. A.
Epstein
, “
SARS-CoV-2 spike protein binding selectively accelerates substrate-specific catalytic activity of ACE2
,”
J. Biochem.
170
,
299
306
(
2021
).
34.
Y.-H.
Shin
,
K.
Jeong
,
J.
Lee
,
H. J.
Lee
,
J.
Yim
,
J.
Kim
,
S.
Kim
, and
S. B.
Park
, “
Inhibition of ACE2-spike interaction by an ACE2 binder suppresses SARS-CoV-2 entry
,”
Angew. Chem., Int. Ed.
61
,
e202115695
(
2022
).
35.
M. M.
Tirion
, “
Large amplitude elastic motions in proteins from a single-parameter, atomic analysis
,”
Phys. Rev. Lett.
77
,
1905
1908
(
1996
).
36.
I.
Bahar
,
A. R.
Atilgan
, and
B.
Erman
, “
Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential
,”
Fold Des.
2
,
173
181
(
1997
).
37.
P.
Towler
,
B.
Staker
,
S. G.
Prasad
,
S.
Menon
,
J.
Tang
,
T.
Parsons
,
D.
Ryan
,
M.
Fisher
,
D.
Williams
,
N. A.
Dales
,
M. A.
Patane
, and
M. W.
Pantoliano
, “
ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis
,”
J. Biol. Chem.
279
,
17996
18007
(
2004
).
38.
J.
Lan
,
J.
Ge
,
J.
Yu
,
S.
Shan
,
H.
Zhou
,
S.
Fan
,
Q.
Zhang
,
X.
Shi
,
Q.
Wang
,
L.
Zhang
, and
X.
Wang
, “
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
,”
Nature
581
,
215
220
(
2020
).
39.
W.
Zheng
,
B. R.
Brooks
,
S.
Doniach
, and
D.
Thirumalai
, “
Network of dynamically important residues in the open/closed transition in polymerases is strongly conserved
,”
Structure
13
,
565
577
(
2005
).
40.
W.
Zheng
,
B. R.
Brooks
, and
D.
Thirumalai
, “
Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
7664
7669
(
2006
).
41.
R.
Tehver
,
J.
Chen
, and
D.
Thirumalai
, “
Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle
,”
J. Mol. Biol.
387
,
390
406
(
2009
).
42.
Z.
Liu
,
G.
Reddy
,
E. P.
O’Brien
, and
D.
Thirumalai
, “
Collapse kinetics and chevron plots from simulations of denaturant-dependent folding of globular proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
7787
7792
(
2011
).
43.
M. R.
Betancourt
and
D.
Thirumalai
, “
Pair potentials for protein folding: Choice of reference states and sensitivity of predicted native states to variations in the interaction schemes
,”
Protein Sci.
8
,
361
369
(
1999
).
44.
P.
Zhao
,
J. L.
Praissman
,
O. C.
Grant
,
Y.
Cai
,
T.
Xiao
,
K. E.
Rosenbalm
,
K.
Aoki
,
B. P.
Kellman
,
R.
Bridger
,
D. H.
Barouch
,
M. A.
Brindley
,
N. E.
Lewis
,
M.
Tiemeyer
,
B.
Chen
,
R. J.
Woods
, and
L.
Wells
, “
Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor
,”
Cell Host Microbe
28
,
586
601.e6
(
2020
).
45.
A.
Bernardi
,
Y.
Huang
,
B.
Harris
,
Y.
Xiong
,
S.
Nandi
,
K. A.
McDonald
, and
R.
Faller
, “
Development and simulation of fully glycosylated molecular models of ACE2-Fc fusion proteins and their interaction with the SARS-CoV-2 spike protein binding domain
,”
PLoS One
15
,
e0237295
(
2020
).
46.
A. R.
Mehdipour
and
G.
Hummer
, “
Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2100425118
(
2021
).
47.
A.
Acharya
,
D. L.
Lynch
,
A.
Pavlova
,
Y. T.
Pang
, and
J. C.
Gumbart
, “
ACE2 glycans preferentially interact with SARS-CoV-2 over SARS-CoV
,”
Chem. Commun.
57
,
5949
5952
(
2021
).
48.
K.
Nguyen
,
S.
Chakraborty
,
R. A.
Mansbach
,
B.
Korber
, and
S.
Gnanakaran
, “
Exploring the role of glycans in the interaction of SARS-CoV-2 RBD and human receptor ACE2
,”
Viruses
13
,
927
(
2021
).
49.
W.
Cao
,
C.
Dong
,
S.
Kim
,
D.
Hou
,
W.
Tai
,
L.
Du
,
W.
Im
, and
X. F.
Zhang
, “
Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction
,”
Biophys. J.
120
,
1011
1019
(
2021
).
50.
T.
Capraz
,
N. F.
Kienzl
,
E.
Laurent
,
J. W.
Perthold
,
E.
Föderl-Höbenreich
,
C.
Grünwald-Gruber
,
D.
Maresch
,
V.
Monteil
,
J.
Niederhöfer
,
G.
Wirnsberger
,
A.
Mirazimi
,
K.
Zatloukal
,
L.
Mach
,
J. M.
Penninger
,
C.
Oostenbrink
, and
J.
Stadlmann
, “
Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor
,”
eLife
10
,
e73641
(
2021
).
51.
Y.
Huang
,
B. S.
Harris
,
S. A.
Minami
,
S.
Jung
,
P. S.
Shah
,
S.
Nandi
,
K. A.
McDonald
, and
R.
Faller
, “
SARS-Cov-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction
,”
Biophys. J.
121
,
79
90
(
2022
).
52.
Q.
Yang
,
T. A.
Hughes
,
A.
Kelkar
,
X.
Yu
,
K.
Cheng
,
S.
Park
,
W.-C.
Huang
,
J. F.
Lovell
, and
S.
Neelamegham
, “
Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration
,”
eLife
9
,
e61552
(
2020
).
53.
J. D.
Allen
,
Y.
Watanabe
,
H.
Chawla
,
M. L.
Newby
, and
M.
Crispin
, “
Subtle influence of ACE2 glycan processing on SARS-CoV-2 recognition
,”
J. Mol. Biol.
433
,
166762
(
2021
).
54.
Z.
Sun
,
K.
Ren
,
X.
Zhang
,
J.
Chen
,
Z.
Jiang
,
J.
Jiang
,
F.
Ji
,
X.
Ouyang
, and
L.
Li
, “
Mass spectrometry analysis of newly emerging coronavirus HCoV-19 spike protein and human ACE2 reveals camouflaging glycans and unique post-translational modifications
,”
Engineering
7
,
1441
1451
(
2020
).
55.
R.
Rowland
and
A.
Brandariz-Nuñez
, “
Analysis of the role of N-linked glycosylation in cell surface expression, function, and binding properties of SARS-CoV-2 receptor ACE2
,”
Microbiol Spectr
9
,
e01199-21
(
2021
).
56.
K.
Suryamohan
,
D.
Diwanji
,
E. W.
Stawiski
,
R.
Gupta
,
S.
Miersch
,
J.
Liu
,
C.
Chen
,
Y.-P.
Jiang
,
F. A.
Fellouse
,
J. F.
Sathirapongsasuti
,
P. K.
Albers
,
T.
Deepak
,
R.
Saberianfar
,
A.
Ratan
,
G.
Washburn
,
M.
Mis
,
D.
Santhosh
,
S.
Somasekar
,
G. H.
Hiranjith
,
D.
Vargas
,
S.
Mohan
,
S.
Phalke
,
B.
Kuriakose
,
A.
Antony
,
M.
Ustav
, Jr.
,
S. C.
Schuster
,
S.
Sidhu
,
J. R.
Junutula
,
N.
Jura
, and
S.
Seshagiri
, “
Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2
,”
Commun. Biol.
4
,
475
(
2021
).
57.
H. T.
Vu
,
Z.
Zhang
,
R.
Tehver
, and
D.
Thirumalai
, “
Plus and minus ends of microtubules respond asymmetrically to kinesin binding by a long-range directionally driven allosteric mechanism
,”
Sci. Adv.
8
,
eabn0856
(
2022
).
58.
The PyMOL Molecular Graphics System, Version 1.7.6.0 Schrödinger, LLC,
2014
.
59.
J. D.
Hunter
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
,
90
95
(
2007
).
60.
T.
Kluyver
,
B.
Ragan-Kelley
,
F.
Pérez
,
B.
Granger
,
M.
Bussonnier
,
J.
Frederic
,
K.
Kelley
,
J.
Hamrick
,
J.
Grout
,
S.
Corlay
,
P.
Ivanov
,
D.
Avila
,
S.
Abdalla
,
C.
Willing
, and
Jupyter Development Team
, “
Jupyter notebooks-a publishing format for reproducible computational workflows
,” in
Positioning and Power in Academic Publishing: Players, Agents and Agendas
(
IOS Press
,
2016
), pp.
87
90
.
61.
H.
Hadi-Alijanvand
and
M.
Rouhani
, “
Studying the effects of ACE2 mutations on the stability, dynamics, and dissociation process of SARS-CoV-2 S1/hACE2 complexes
,”
J. Proteome Res.
19
,
4609
4623
(
2020
).
62.
K.
Wu
,
G.
Peng
,
M.
Wilken
,
R. J.
Geraghty
, and
F.
Li
, “
Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus
,”
J. Biol. Chem.
287
,
8904
8911
(
2012
).
63.
M.
Hussain
,
N.
Jabeen
,
F.
Raza
,
S.
Shabbir
,
A. A.
Baig
,
A.
Amanullah
, and
B.
Aziz
, “
Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein
,”
J. Med. Virol.
92
,
1580
1586
(
2020
).
64.
W.
Li
,
C.
Zhang
,
J.
Sui
,
J. H.
Kuhn
,
M. J.
Moore
,
S.
Luo
,
S.-K.
Wong
,
I.-C.
Huang
,
K.
Xu
,
N.
Vasilieva
,
A.
Murakami
,
Y.
He
,
W. A.
Marasco
,
Y.
Guan
,
H.
Choe
, and
M.
Farzan
, “
Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2
,”
EMBO J.
24
,
1634
1643
(
2005
).
65.
H.
Othman
,
Z.
Bouslama
,
J.-T.
Brandenburg
,
J.
da Rocha
,
Y.
Hamdi
,
K.
Ghedira
,
N.
Srairi-Abid
, and
S.
Hazelhurst
, “
Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism
,”
Biochem. Biophys. Res. Commun.
527
,
702
708
(
2020
).
66.
W.
Li
,
M. J.
Moore
,
N.
Vasilieva
,
J.
Sui
,
S. K.
Wong
,
M. A.
Berne
,
M.
Somasundaran
,
J. L.
Sullivan
,
K.
Luzuriaga
,
T. C.
Greenough
,
H.
Choe
, and
M.
Farzan
, “
Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
,”
Nature
426
,
450
454
(
2003
).
67.
M. J.
Huentelman
,
J.
Zubcevic
,
J. A.
Hernández Prada
,
X.
Xiao
,
D. S.
Dimitrov
,
M. K.
Raizada
, and
D. A.
Ostrov
, “
Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor
,”
Hypertension
44
,
903
906
(
2004
).
68.
B. J.
Williams-Noonan
,
N.
Todorova
,
K.
Kulkarni
,
M.-I.
Aguilar
, and
I.
Yarovsky
, “
An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2
,”
J. Phys. Chem. B
125
,
2533
2550
(
2021
).

Supplementary Material

You do not currently have access to this content.