Mutations in protein phosphatase 2A (PP2A) are connected to intellectual disability and cancer. It has been hypothesized that these mutations might disrupt the autoinhibition and phosphorylation-induced activation of PP2A. Since they are located far from both the active and substrate binding sites, it is unclear how they exert their effect. We performed allosteric pathway analysis based on molecular dynamics simulations and combined it with biochemical experiments to investigate the autoinhibition of PP2A. In the wild type (WT), the C-arm of the regulatory subunit B56δ obstructs the active and substrate binding sites exerting a dual autoinhibition effect. We find that the disease mutant, E198K, severely weakens the allosteric pathways that stabilize the C-arm in the WT. Instead, the strongest allosteric pathways in E198K take a different route that promotes exposure of the substrate binding site. To facilitate the allosteric pathway analysis, we introduce a path clustering algorithm for lumping pathways into channels. We reveal remarkable similarities between the allosteric channels of E198K and those in phosphorylation-activated WT, suggesting that the autoinhibition can be alleviated through a conserved mechanism. In contrast, we find that another disease mutant, E200K, which is in spatial proximity of E198, does not repartition the allosteric pathways leading to the substrate binding site; however, it may still induce exposure of the active site. This finding agrees with our biochemical data, allowing us to predict the activity of PP2A with the phosphorylated B56δ and provide insight into how disease mutations in spatial proximity alter the enzymatic activity in surprisingly different mechanisms.

1.
V.
Janssens
,
J.
Goris
, and
C.
Van Hoof
, “
PP2A: The expected tumor suppressor
,”
Curr. Opin. Genet. Dev.
15
(
1
),
34
41
(
2005
).
2.
C.
Van Hoof
,
V.
Janssens
,
I.
De Baere
,
M. J. R.
Stark
,
J. H.
de Winde
,
J.
Winderickx
,
J. M.
Thevelein
,
W.
Merlevede
, and
J.
Goris
, “
The Saccharomyces cerevisiae phosphotyrosyl phosphatase activator proteins are required for a subset of the functions disrupted by protein phosphatase 2A mutations
,”
Exp. Cell Res.
264
(
2
),
372
387
(
2001
).
3.
N.
Wlodarchak
and
Y.
Xing
, “
PP2A as a master regulator of the cell cycle
,”
Crit. Rev. Biochem. Mol. Biol.
51
(
3
),
162
184
(
2016
).
4.
C.-G.
Wu
,
H.
Chen
,
F.
Guo
,
V. K.
Yadav
,
S. J.
Mcilwain
,
M.
Rowse
,
A.
Choudhary
,
Z.
Lin
,
Y.
Li
,
T.
Gu
,
A.
Zheng
,
Q.
Xu
,
W.
Lee
,
E.
Resch
,
B.
Johnson
,
J.
Day
,
Y.
Ge
,
I. M.
Ong
,
M. E.
Burkard
,
Y.
Ivarsson
, and
Y.
Xing
, “
PP2A-B′ holoenzyme substrate recognition, regulation and role in cytokinesis
,”
Cell Discovery
3
(
1
),
17027
(
2017
).
5.
E. P. T.
Hertz
,
T.
Kruse
,
N. E.
Davey
,
B.
López-Méndez
,
J. O.
Sigurðsson
,
G.
Montoya
,
J. V.
Olsen
, and
J.
Nilsson
, “
A conserved motif provides binding specificity to the PP2A-B56 phosphatase
,”
Mol. Cell
63
(
4
),
686
695
(
2016
).
6.
J.
Wang
,
Z.
Wang
,
T.
Yu
,
H.
Yang
,
D. M.
Virshup
,
G. J. P. L.
Kops
,
S. H.
Lee
,
W.
Zhou
,
X.
Li
,
W.
Xu
, and
Z.
Rao
, “
Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization
,”
Protein Cell
7
(
7
),
516
526
(
2016
).
7.
X.
Wang
,
R.
Bajaj
,
M.
Bollen
,
W.
Peti
, and
R.
Page
, “
Expanding the PP2A interactome by defining a B56-specific SLiM
,”
Structure
24
(
12
),
2174
2181
(
2016
).
8.
J. D.
Arroyo
and
W. C.
Hahn
, “
Involvement of PP2A in viral and cellular transformation
,”
Oncogene
24
(
52
),
7746
7755
(
2005
).
9.
S. B.
Vafai
and
J. B.
Stock
, “
Protein phosphatase 2A methylation: A link between elevated plasma homocysteine and Alzheimer’s disease
,”
FEBS Lett.
518
(
1–3
),
1
4
(
2002
).
10.
E.
Sontag
,
C.
Hladik
,
L.
Montgomery
,
A.
Luangpirom
,
I.
Mudrak
,
E.
Ogris
, and
C. L.
White
, “
Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis
,”
J. Neuropathol. Exp. Neurol.
63
(
10
),
1080
1091
(
2004
).
11.
E.
Cerami
,
J.
Gao
,
U.
Dogrusoz
,
B. E.
Gross
,
S. O.
Sumer
,
B. A.
Aksoy
,
A.
Jacobsen
,
C. J.
Byrne
,
M. L.
Heuer
,
E.
Larsson
,
Y.
Antipin
,
B.
Reva
,
A. P.
Goldberg
,
C.
Sander
, and
N.
Schultz
, “
The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data
,”
Cancer Discovery
2
(
5
),
401
404
(
2012
).
12.
J.
Gao
,
B. A.
Aksoy
,
U.
Dogrusoz
,
G.
Dresdner
,
B.
Gross
,
S. O.
Sumer
,
Y.
Sun
,
A.
Jacobsen
,
R.
Sinha
,
E.
Larsson
,
E.
Cerami
,
C.
Sander
, and
N.
Schultz
, “
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
,”
Sci. Signaling
6
(
269
),
pl1
(
2013
).
13.
L.
Shang
,
L. B.
Henderson
,
M. T.
Cho
,
D. S.
Petrey
,
C.-T.
Fong
,
K. M.
Haude
,
N.
Shur
,
J.
Lundberg
,
N.
Hauser
,
J.
Carmichael
,
J.
Innis
,
J.
Schuette
,
Y. W.
Wu
,
S.
Asaikar
,
M.
Pearson
,
L.
Folk
,
K.
Retterer
,
K. G.
Monaghan
, and
W. K.
Chung
, “
De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism
,”
Neurogenetics
17
(
1
),
43
49
(
2016
).
14.
G.
Houge
,
D.
Haesen
,
L. E. L. M.
Vissers
,
S.
Mehta
,
M. J.
Parker
,
M.
Wright
,
J.
Vogt
,
S.
McKee
,
J. L.
Tolmie
,
N.
Cordeiro
,
T.
Kleefstra
,
M. H.
Willemsen
,
M. R. F.
Reijnders
,
S.
Berland
,
E.
Hayman
,
E.
Lahat
,
E. H.
Brilstra
,
K. L. I.
van Gassen
,
E.
Zonneveld-Huijssoon
,
C. I.
de Bie
,
A.
Hoischen
,
E. E.
Eichler
,
R.
Holdhus
,
V. M.
Steen
,
S. O.
Døskeland
,
M. E.
Hurles
,
D. R.
FitzPatrick
, and
V.
Janssens
, “
B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability
,”
J. Clin. Invest.
125
(
8
),
3051
3062
(
2015
).
15.
D.
Biswas
,
W.
Cary
, and
J. A.
Nolta
, “
PPP2R5D-related intellectual disability and neurodevelopmental delay: A review of the current understanding of the genetics and biochemical basis of the disorder
,”
Int. J. Mol. Sci.
21
(
4
),
1286
(
2020
).
16.
J. F.
McRae
, “
Prevalence and architecture of de novo mutations in developmental disorders
,”
Nature
542
(
7642
),
433
438
(
2017
).
17.
C.-G.
Wu
,
V. K.
Balakrishnan
,
P. S.
Parihar
,
K.
Konovolov
,
Y.-C.
Chen
,
R. A.
Merrill
,
H.
Wei
,
B.
Carragher
,
R.
Sundaresan
,
Q.
Cui
,
B. E.
Wadzinski
,
M. R.
Swingle
,
A.
Musiyenko
,
R.
Honkanen
,
A.
Suzuki
,
S.
Strack
,
X.
Huang
, and
Y.
Xing
, bioRxiv:10.1101/2023.03.09.530109v2 (
2023
).
18.
S. J.
Wodak
,
E.
Paci
,
N. V.
Dokholyan
,
I. N.
Berezovsky
,
A.
Horovitz
,
J.
Li
,
V. J.
Hilser
,
I.
Bahar
,
J.
Karanicolas
,
G.
Stock
,
P.
Hamm
,
R. H.
Stote
,
J.
Eberhardt
,
Y.
Chebaro
,
A.
Dejaegere
,
M.
Cecchini
,
J.-P.
Changeux
,
P. G.
Bolhuis
,
J.
Vreede
,
P.
Faccioli
,
S.
Orioli
,
R.
Ravasio
,
L.
Yan
,
C.
Brito
,
M.
Wyart
,
P.
Gkeka
,
I.
Rivalta
,
G.
Palermo
,
J. A.
McCammon
,
J.
Panecka-Hofman
,
R. C.
Wade
,
A.
Di Pizio
,
M. Y.
Niv
,
R.
Nussinov
,
C.-J.
Tsai
,
H.
Jang
,
D.
Padhorny
,
D.
Kozakov
, and
T.
McLeish
, “
Allostery in its many disguises: From theory to applications
,”
Structure
27
(
4
),
566
578
(
2019
).
19.
E.
Guarnera
and
I. N.
Berezovsky
, “
Allosteric drugs and mutations: Chances, challenges, and necessity
,”
Curr. Opin. Struct. Biol.
62
,
149
157
(
2020
).
20.
Z.-H.
Yu
and
Z.-Y.
Zhang
, “
Regulatory mechanisms and novel therapeutic targeting strategies for protein tyrosine phosphatases
,”
Chem. Rev.
118
(
3
),
1069
1091
(
2018
).
21.
V. A.
Feher
,
J. D.
Durrant
,
A. T.
Van Wart
, and
R. E.
Amaro
, “
Computational approaches to mapping allosteric pathways
,”
Curr. Opin. Struct. Biol.
25
,
98
103
(
2014
).
22.
M.
Leander
,
Y.
Yuan
,
A.
Meger
,
Q.
Cui
, and
S.
Raman
, “
Functional plasticity and evolutionary adaptation of allosteric regulation
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
41
),
25445
25454
(
2020
).
23.
R.
Sprangers
,
A.
Velyvis
, and
L. E.
Kay
, “
Solution NMR of supramolecular complexes: Providing new insights into function
,”
Nat. Methods
4
(
9
),
697
703
(
2007
).
24.
S.-R.
Tzeng
and
C. G.
Kalodimos
, “
Protein dynamics and allostery: An NMR view
,”
Curr. Opin. Struct. Biol.
21
(
1
),
62
67
(
2011
).
25.
H.
Mazal
and
G.
Haran
, “
Single-molecule FRET methods to study the dynamics of proteins at work
,”
Curr. Opin. Biomed. Eng.
12
,
8
17
(
2019
).
26.
Z. N.
Gerek
and
S. B.
Ozkan
, “
Change in allosteric network affects binding affinities of PDZ domains: Analysis through perturbation response scanning
,”
PLoS Comput. Biol.
7
(
10
),
e1002154
(
2011
).
27.
H.
van den Bedem
,
G.
Bhabha
,
K.
Yang
,
P. E.
Wright
, and
J. S.
Fraser
, “
Automated identification of functional dynamic contact networks from X-ray crystallography
,”
Nat. Methods
10
(
9
),
896
902
(
2013
).
28.
B.
Wang
,
J.
Weng
,
K.
Fan
, and
W.
Wang
, “
Elastic network model-based normal mode analysis reveals the conformational couplings in the tripartite AcrAB-TolC multidrug efflux complex
,”
Proteins: Struct., Funct., Bioinf.
79
(
10
),
2936
2945
(
2011
).
29.
D. R.
Livesay
,
K. E.
Kreth
, and
A. A.
Fodor
, “
A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms
,”
Methods Mol. Biol.
796
,
385
398
(
2012
).
30.
M. D.
Daily
,
T. J.
Upadhyaya
, and
J. J.
Gray
, “
Contact rearrangements form coupled networks from local motions in allosteric proteins
,”
Proteins: Struct., Funct., Bioinf.
71
(
1
),
455
466
(
2008
).
31.
S.
Bhattacharya
and
N.
Vaidehi
, “
Differences in allosteric communication pipelines in the inactive and active states of a GPCR
,”
Biophys. J.
107
(
2
),
422
434
(
2014
).
32.
W. M.
Botello-Smith
and
Y.
Luo
, “
Robust determination of protein allosteric signaling pathways
,”
J. Chem. Theory Comput.
15
(
4
),
2116
2126
(
2019
).
33.
M. C. R.
Melo
,
R. C.
Bernardi
,
C.
de la Fuente-Nunez
, and
Z.
Luthey-Schulten
, “
Generalized correlation-based dynamical network analysis: A new high-performance approach for identifying allosteric communications in molecular dynamics trajectories
,”
J. Chem. Phys.
153
(
13
),
134104
(
2020
).
34.
A. M.
Westerlund
,
O.
Fleetwood
,
S.
Pérez-Conesa
, and
L.
Delemotte
, “
Network analysis reveals how lipids and other cofactors influence membrane protein allostery
,”
J. Chem. Phys.
153
(
14
),
141103
(
2020
).
35.
P. W.
Kang
,
A. M.
Westerlund
,
J.
Shi
,
K. M.
White
,
A. K.
Dou
,
A. H.
Cui
,
J. R.
Silva
,
L.
Delemotte
, and
J.
Cui
, “
Calmodulin acts as a state-dependent switch to control a cardiac potassium channel opening
,”
Sci. Adv.
6
(
50
),
eabd6798
(
2020
).
36.
A.
Sethi
,
J.
Eargle
,
A. A.
Black
, and
Z.
Luthey-Schulten
, “
Dynamical networks in tRNA: Protein complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
16
),
6620
6625
(
2009
).
37.
O.
Bozovic
,
C.
Zanobini
,
A.
Gulzar
,
B.
Jankovic
,
D.
Buhrke
,
M.
Post
,
S.
Wolf
,
G.
Stock
, and
P.
Hamm
, “
Real-time observation of ligand-induced allosteric transitions in a PDZ domain
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
42
),
26031
26039
(
2020
).
38.
S. W.
Lockless
and
R.
Ranganathan
, “
Evolutionarily conserved pathways of energetic connectivity in protein families
,”
Science
286
(
5438
),
295
299
(
1999
).
39.
G.
Palermo
,
C. G.
Ricci
,
A.
Fernando
,
R.
Basak
,
M.
Jinek
,
I.
Rivalta
,
V. S.
Batista
, and
J. A.
McCammon
, “
Protospacer adjacent motif-induced allostery activates CRISPR-Cas9
,”
J. Am. Chem. Soc.
139
(
45
),
16028
16031
(
2017
).
40.
J.
Guo
and
H.-X.
Zhou
, “
Protein allostery and conformational dynamics
,”
Chem. Rev.
116
(
11
),
6503
6515
(
2016
).
41.
P. T.
Lake
,
R. B.
Davidson
,
H.
Klem
,
G. M.
Hocky
, and
M.
McCullagh
, “
Residue-level allostery propagates through the effective coarse-grained Hessian
,”
J. Chem. Theory Comput.
16
(
5
),
3385
3395
(
2020
).
42.
Y.
Yuan
,
J.
Deng
, and
Q.
Cui
, “
Molecular dynamics simulations establish the molecular basis for the broad allostery hotspot distributions in the tetracycline repressor
,”
J. Am. Chem. Soc.
144
(
24
),
10870
10887
(
2022
).
43.
S.
Dutta
,
B.
Selvam
, and
D.
Shukla
, “
Distinct binding mechanisms for allosteric sodium ion in cannabinoid receptors
,”
ACS Chem. Neurosci.
13
(
3
),
379
389
(
2022
).
44.
G. R.
Bowman
and
P. L.
Geissler
, “
Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
29
),
11681
11686
(
2012
).
45.
B. T.
Kaynak
,
Z. L.
Dahmani
,
P.
Doruker
,
A.
Banerjee
,
S.-H.
Yang
,
R.
Gordon
,
L. S.
Itzhaki
, and
I.
Bahar
, “
Cooperative mechanics of PR65 scaffold underlies the allosteric regulation of the phosphatase PP2A
,”
Structure
31
(
5
),
607
(
2023
).
46.
A.
Romero-Rivera
,
M.
Garcia-Borràs
, and
S.
Osuna
, “
Role of conformational dynamics in the evolution of retro-aldolase activity
,”
ACS Catal.
7
(
12
),
8524
8532
(
2017
).
47.
A.
Saltalamacchia
,
L.
Casalino
,
J.
Borišek
,
V. S.
Batista
,
I.
Rivalta
, and
A.
Magistrato
, “
Decrypting the information exchange pathways across the spliceosome machinery
,”
J. Am. Chem. Soc.
142
(
18
),
8403
8411
(
2020
).
48.
J.
Jumper
,
R.
Evans
,
A.
Pritzel
,
T.
Green
,
M.
Figurnov
,
O.
Ronneberger
,
K.
Tunyasuvunakool
,
R.
Bates
,
A.
Žídek
,
A.
Potapenko
,
A.
Bridgland
,
C.
Meyer
,
S. A. A.
Kohl
,
A. J.
Ballard
,
A.
Cowie
,
B.
Romera-Paredes
,
S.
Nikolov
,
R.
Jain
,
J.
Adler
,
T.
Back
,
S.
Petersen
,
D.
Reiman
,
E.
Clancy
,
M.
Zielinski
,
M.
Steinegger
,
M.
Pacholska
,
T.
Berghammer
,
S.
Bodenstein
,
D.
Silver
,
O.
Vinyals
,
A. W.
Senior
,
K.
Kavukcuoglu
,
P.
Kohli
, and
D.
Hassabis
, “
Highly accurate protein structure prediction with AlphaFold
,”
Nature
596
(
7873
),
583
589
(
2021
).
49.
Schrödinger, LLC
, The PyMOL Molecular Graphics System, Version 1.8,
2015
.
50.
C. R.
Søndergaard
,
M. H. M.
Olsson
,
M.
Rostkowski
, and
J. H.
Jensen
, “
Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values
,”
J. Chem. Theory Comput.
7
(
7
),
2284
2295
(
2011
).
51.
M. H. M.
Olsson
,
C. R.
Søndergaard
,
M.
Rostkowski
, and
J. H.
Jensen
, “
PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions
,”
J. Chem. Theory Comput.
7
(
2
),
525
537
(
2011
).
52.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
, “
Improved side-chain torsion potentials for the Amber ff99SB protein force field
,”
Proteins: Struct., Funct., Bioinf.
78
(
8
),
1950
1958
(
2010
).
53.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
54.
P.
Mark
and
L.
Nilsson
, “
Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,”
J. Phys. Chem. A
105
(
43
),
9954
9960
(
2001
).
55.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
56.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
57.
M.
Bernetti
and
G.
Bussi
, “
Pressure control using stochastic cell rescaling
,”
J. Chem. Phys.
153
(
11
),
114107
(
2020
).
58.
R. T.
McGibbon
,
K. A.
Beauchamp
,
M. P.
Harrigan
,
C.
Klein
,
J. M.
Swails
,
C. X.
Hernández
,
C. R.
Schwantes
,
L.-P.
Wang
,
T. J.
Lane
, and
V. S.
Pande
, “
MDTraj: A modern open library for the analysis of molecular dynamics trajectories
,”
Biophys. J.
109
(
8
),
1528
1532
(
2015
).
59.
G.
Perrone
,
J.
Unpingco
, and
H.
Lu
, “
Network visualizations with Pyvis and VisJS
,” in Proceedings of the 19th Python in Science Conference (
SciPy
,
2020
) pp.
58
62
.
60.
O. F.
Lange
and
H.
Grubmüller
, “
Generalized correlation for biomolecular dynamics
,”
Proteins: Struct., Funct., Bioinf.
62
(
4
),
1053
1061
(
2006
).
61.
E. W.
Dijkstra
, “
A note on two problems in connexion with graphs
,”
Numer. Math.
1
(
1
),
269
271
(
1959
).
62.
A. A.
Hagberg
,
D. A.
Schult
, and
P. J.
Swart
, “
Exploring network structure, dynamics, and function using Networkx
,” in
Proceedings of the 7th Python in Science Conference
(
SciPy
,
2008
) pp.
11
15
.
63.
A. T.
Van Wart
,
J.
Durrant
,
L.
Votapka
, and
R. E.
Amaro
, “
Weighted implementation of suboptimal paths (WISP): An optimized algorithm and tool for dynamical network analysis
,”
J. Chem. Theory Comput.
10
(
2
),
511
517
(
2014
).
64.
T.
Dodd
,
X.-Q.
Yao
,
D.
Hamelberg
, and
I.
Ivanov
, “
Subsets of adjacent nodes (SOAN): A fast method for computing suboptimal paths in protein dynamic networks
,”
Mol. Phys.
119
(
19–20
),
e1893847
(
2021
).
65.
J. Y.
Yen
, “
Finding the K shortest loopless paths in a network
,”
Manage. Sci.
17
(
11
),
712
716
(
1971
).
66.
A.
Ng
,
M.
Jordan
, and
Y.
Weiss
,
Advances in Neural Information Processing Systems
(
MIT Press
,
2001
).
67.
P. V.
Hornbeck
,
B.
Zhang
,
B.
Murray
,
J. M.
Kornhauser
,
V.
Latham
, and
E.
Skrzypek
, “
PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations
,”
Nucleic Acids Res.
43
(
D1
),
D512
D520
(
2015
).
68.
K. L.
Dodge-Kafka
,
A.
Bauman
,
N.
Mayer
,
E.
Henson
,
L.
Heredia
,
J.
Ahn
,
T.
McAvoy
,
A. C.
Nairn
, and
M. S.
Kapiloff
, “
cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3
,”
J. Biol. Chem.
285
(
15
),
11078
11086
(
2010
).
69.
J.-H.
Ahn
,
T.
McAvoy
,
S. V.
Rakhilin
,
A.
Nishi
,
P.
Greengard
, and
A. C.
Nairn
, “
Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56δ subunit
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
8
),
2979
2984
(
2007
).
70.
M. P.
Flynn
,
E. T.
Maizels
,
A. B.
Karlsson
,
T.
McAvoy
,
J.-H.
Ahn
,
A. C.
Nairn
, and
M.
Hunzicker-Dunn
, “
Luteinizing hormone receptor activation in ovarian granulosa cells promotes protein kinase A-dependent dephosphorylation of microtubule-associated protein 2D
,”
Mol. Endocrinol.
22
(
7
),
1695
1710
(
2008
).
71.
W.
E
and
E.
Vanden-Eijnden
, “
Towards a theory of transition paths
,”
J. Stat. Phys.
123
(
3
),
503
523
(
2006
).
72.
L.
Meng
,
F. K.
Sheong
,
X.
Zeng
,
L.
Zhu
, and
X.
Huang
, “
Path lumping: An efficient algorithm to identify metastable path channels for conformational dynamics of multi-body systems
,”
J. Chem. Phys.
147
(
4
),
044112
(
2017
).
73.
L.-T.
Da
,
D.
Wang
, and
X.
Huang
, “
Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II
,”
J. Am. Chem. Soc.
134
(
4
),
2399
2406
(
2012
).
74.
Q.
Qiao
,
G. R.
Bowman
, and
X.
Huang
, “
Dynamics of an intrinsically disordered protein reveal metastable conformations that potentially seed aggregation
,”
J. Am. Chem. Soc.
135
(
43
),
16092
16101
(
2013
).
75.
S.
Gu
,
D.-A.
Silva
,
L.
Meng
,
A.
Yue
, and
X.
Huang
, “
Quantitatively characterizing the ligand binding mechanisms of choline binding protein using Markov state model analysis
,”
PLOS Comput. Biol.
10
(
8
),
e1003767
(
2014
).
76.
W.
Zhuang
,
R. Z.
Cui
,
D.-A.
Silva
, and
X.
Huang
, “
Simulating the T-jump-triggered unfolding dynamics of trpzip2 peptide and its time-resolved IR and two-dimensional IR signals using the Markov state model approach
,”
J. Phys. Chem. B
115
(
18
),
5415
5424
(
2011
).
77.
D.-A.
Silva
,
D. R.
Weiss
,
F.
Pardo Avila
,
L.-T.
Da
,
M.
Levitt
,
D.
Wang
, and
X.
Huang
, “
Millisecond dynamics of RNA polymerase II translocation at atomic resolution
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
21
),
7665
7670
(
2014
).
78.
H.
Jiang
,
F. K.
Sheong
,
L.
Zhu
,
X.
Gao
,
J.
Bernauer
, and
X.
Huang
, “
Markov state models reveal a two-step mechanism of miRNA loading into the human argonaute protein: Selective binding followed by structural re-arrangement
,”
PLOS Comput. Biol.
11
(
7
),
e1004404
(
2015
).
79.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
45
),
19011
19016
(
2009
).
80.
F.
Noé
and
S.
Fischer
, “
Transition networks for modeling the kinetics of conformational change in macromolecules
,”
Curr. Opin. Struct. Biol.
18
(
2
),
154
162
(
2008
).
81.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
, “
Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1−39)
,”
J. Am. Chem. Soc.
132
(
5
),
1526
1528
(
2010
).
82.
G. R.
Bowman
,
V. A.
Voelz
, and
V. S.
Pande
, “
Taming the complexity of protein folding
,”
Curr. Opin. Struct. Biol.
21
(
1
),
4
11
(
2011
).
83.
F.
Morcos
,
S.
Chatterjee
,
C. L.
McClendon
,
P. R.
Brenner
,
R.
López-Rendón
,
J.
Zintsmaster
,
M.
Ercsey-Ravasz
,
C. R.
Sweet
,
M. P.
Jacobson
,
J. W.
Peng
, and
J. A.
Izaguirre
, “
Modeling conformational ensembles of slow functional motions in Pin1-WW
,”
PLOS Comput. Biol.
6
(
12
),
e1001015
(
2010
).
84.
I.
Buch
,
T.
Giorgino
, and
G.
De Fabritiis
, “
Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
25
),
10184
10189
(
2011
).
85.
J. D.
Chodera
and
F.
Noé
, “
Markov state models of biomolecular conformational dynamics
,”
Curr. Opin. Struct. Biol.
25
,
135
144
(
2014
).
86.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
, “
Progress and challenges in the automated construction of Markov state models for full protein systems
,”
J. Chem. Phys.
131
(
12
),
124101
(
2009
).
87.
X.-Q.
Yao
and
D.
Hamelberg
, “
Residue–residue contact changes during functional processes define allosteric communication pathways
,”
J. Chem. Theory Comput.
18
(
2
),
1173
1187
(
2022
).

Supplementary Material

You do not currently have access to this content.