The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°–25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m−2 day−1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600–2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.

1.
S.
Bidhuri
,
M.
Taqi
, and
M. M. A.
Khan
,
J. Public Health
26
,
119
(
2018
).
2.
M. M.
Mekonnen
and
A. Y.
Hoekstra
,
Sci. Adv.
2
,
e1500323
(
2016
).
3.
J. M.
Wallace
and
P. V.
Hobbs
,
Atmospheric Science: An Introductory Survey
(
Elsevier
,
2006
), Vol.
92
.
4.
D.
Beysens
,
Dew Water
(
River Publishers
,
2018
).
5.
Y.
Tu
et al,
Joule
2
,
1452
(
2018
).
6.
R. V.
Wahlgren
,
Water Res.
35
,
1
(
2001
).
7.
D.
Kashchiev
,
Nucleation
(
Elsevier
,
2000
).
8.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer Science and Business Media
,
2006
).
9.
K. K.
Varanasi
et al,
Appl. Phys. Lett.
95
,
094101
(
2009
).
10.
D.
Beysens
,
Atmos. Res.
39
,
215
(
1995
).
11.
C.
Liu
,
J.
Fan
, and
H.
Bao
,
Sol. Energy Mater. Sol. Cells
216
,
110700
(
2020
).
12.
A.
Katselas
,
R.
Parin
, and
C.
Neto
,
Adv. Mater. Interfaces
9
,
2200246
(
2022
).
13.
J.
Lopez
,
C. A.
Miller
, and
E.
Ruckenstein
,
J. Colloid Interface Sci.
56
,
460
(
1976
).
14.
H.
Cha
et al,
Sci. Adv.
6
,
eaax0746
(
2020
).
15.
S.
Khandekar
and
K.
Muralidhar
,
Dropwise Condensation on Inclined Textured Surfaces
(
Springer
,
2014
).
16.
A.
Ghosh
et al,
Langmuir
30
,
13103
(
2014
).
17.
N.
Miljkovic
,
R.
Enright
, and
E. N.
Wang
,
J. Heat Transfer
135
,
111004
(
2013
).
18.
B. J.
Briscoe
and
K. P.
Galvin
,
Colloids Surf.
56
,
263
(
1991
).
19.
A. M.
Macner
,
S.
Daniel
, and
P. H.
Steen
,
Langmuir
30
,
1788
(
2014
).
20.
C.-W.
Lo
,
C.-C.
Wang
, and
M.-C.
Lu
,
Adv. Funct. Mater.
24
,
1211
(
2014
).
21.
I. O.
Ucar
and
H. Y.
Erbil
,
Appl. Surf. Sci.
259
,
515
(
2012
).
22.
R.
Enright
et al,
Nanoscale Microscale Thermophys. Eng.
18
,
223
(
2014
).
23.
O.
Al-Khayat
et al,
ACS Appl. Mater. Interfaces
9
,
13676
(
2017
).
24.
D.
Beysens
,
The Physics of Dew, Breath Figures and Dropwise Condensation
(
Springer
,
2022
), Vol.
994
.
25.
G.
McHale
et al,
Langmuir
38
,
10032
(
2022
).
26.
A.
Lee
et al,
Langmuir
28
,
10183
(
2012
).
27.
E. Y.
Bormashenko
,
Physics of Wetting
(
De Gruyter
,
2017
).
28.
P.-G.
De Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
2004
), Vol.
315
.
29.
M.
Tancon
et al,
Appl. Therm. Eng.
216
,
119021
(
2022
).
30.
S.
Chavan
et al,
Langmuir
32
,
7774
(
2016
).
31.
C. S.
Sharma
et al,
Adv. Funct. Mater.
32
,
2109633
(
2021
).
32.
S.
Anand
et al,
ACS Nano
6
,
10122
(
2012
).
33.
R.
Xiao
et al,
Sci. Rep.
3
,
1988
(
2013
).
34.
D.
Monga
et al,
ACS Appl. Mater. Interfaces
14
,
13932
(
2022
).
35.
S.
Peppou-Chapman
et al,
Chem. Soc. Rev.
49
,
3688
(
2020
).
36.
L.
Zhang
et al,
Appl. Mater. Interfaces
12
,
20084
(
2020
).
37.
D.
Boylan
et al,
Adv. Funct. Mater.
33
,
2211113
(
2023
).
38.
I. J.
Gresham
and
C.
Neto
,
Adv. Colloid Interface Sci.
315
,
102906
(
2023
).
39.
H.
Barrio-Zhang
et al,
Langmuir
36
,
15094
(
2020
).
40.
D.
Daniel
et al,
Phys. Rev. Lett.
120
,
028006
(
2018
).
41.
W. S. Y.
Wong
et al,
Langmuir
36
,
7236
(
2020
).
42.
H.
Teisala
et al,
Langmuir
36
,
4416
(
2020
).
43.
A.
Papra
,
N.
Gadegaard
, and
N. B.
Larsen
,
Langmuir
17
,
1457
(
2001
).
44.
D.
Beysens
,
C. R. Phys.
7
,
1082
(
2006
).
45.
J. W.
Krumpfer
and
T. J.
McCarthy
,
Faraday Discuss.
146
,
103
(
2010
).
46.
A. M.
Telford
et al,
ACS Appl. Mater. Interfaces
2
,
2399
(
2010
).
47.
H.
Robertson
et al,
SoftwareX
20
,
101225
(
2022
).
48.
M.
James
et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
632
,
112
(
2011
).
49.
A. R. J.
Nelson
and
S. W.
Prescott
,
J. Appl. Crystallogr.
52
,
193
(
2019
).
50.
I. J.
Gresham
et al,
J. Appl. Crystallogr.
54
,
739
(
2021
).
51.
A.
Karim
et al,
Phys. Rev. Lett.
73
,
3407
(
1994
).
52.
A.
Nelson
,
J. Appl. Crystallogr.
39
,
273
(
2006
).
53.
D.
Foreman-Mackey
et al,
Publ. Astron. Soc. Pac.
125
,
306
(
2013
).
54.
N.
Lavielle
,
D.
Beysens
, and
A.
Mongruel
,
Langmuir
39
,
2008
(
2023
).
55.
K.
Fazle Rabbi
et al,
Adv. Funct. Mater.
32
,
2112837
(
2022
).
56.
C. K.
Pandiyarajan
,
O.
Prucker
, and
J.
Rühe
,
Macromolecules
49
,
8254
(
2016
).
57.
T.
Ederth
and
T.
Ekblad
,
Langmuir
34
,
5517
(
2018
).
58.
H.-J.
Butt
et al,
Curr. Opin. Colloid Interface Sci.
59
,
101574
(
2022
).
59.
S.
Li
et al,
Adv. Mater.
34
,
2203242
(
2022
).
60.
H.
Zhao
and
D.
Beysens
,
Langmuir
11
,
627
(
1995
).
61.
C.
Semprebon
and
M.
Brinkmann
,
Soft Matter
10
,
3325
(
2014
).
62.
A. T.
Paxson
et al,
Adv. Mater.
26
,
418
(
2014
).
63.
R.
Parin
et al,
J. Phys.: Conf. Ser.
745
,
032134
(
2016
).
64.
S.
Vemuri
et al,
Appl. Therm. Eng.
26
,
421
(
2006
).
65.
K. W.
Hwang
et al,
J. Mech. Sci. Technol.
30
,
2141
(
2016
).
66.
M.
Shakeri Bonab
,
R.
Kempers
, and
A.
Amirfazli
,
Int. J. Heat Mass Transfer
173
,
121278
(
2021
).
67.
S.
Zheng
et al,
Int. J. Heat Mass Transfer
151
,
119349
(
2020
).
68.
R. A.
Huber
and
M. M.
Derby
,
Sci. Technol. Built. Environ.
29
,
223
(
2023
).

Supplementary Material

You do not currently have access to this content.